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Nonconvex optimization

Problem: (·): non-convex function

Core topic in machine learning and optimization theory

A wide range of applications:  matrix & tensor decomposition, neural 

networks, …



Nonconvex optimization
The most common method for nonconvex optimization: gradient descent (GD) 



First order stationary points
saddle points

local minima



Nonconvex optimization
Common fact about many learning problems:

• Ubiquitous saddle points (including local maxima) can give highly suboptimal solutions

• We would want to escape from saddle points, but finding an   -approx. local minimum        
suffices: 



Escaping from saddle points

Two main considerations:
Simplicity:
• Simpler oracle
• Simpler structure (single-loop, less 

hyperparameters)

Complexity:
• Reduce the dependence on both 

accuracy v and dimension 

Our result:



Escaping from saddle points

• Radius of perturbation: If it is too large, then we 
may backtrack too much. If it is too small, we 
may need many iterations to leave the saddle. 

Main thoughts:

• Way of perturbation: What’s the most efficient 
approach? 

shake when the 
gradient is small

• Gradient descent: Faster versions? 



Perturbed accelerated gradient descent (simplified)
Jin et al. 2017

Bottleneck of the algorithm

• Question: can we do better than uniform perturbation and improve dependence 
on            ? 



Better than uniform perturbation

Intuition: add perturbation in the negative curvature direction

• Agarwal et al. 2017; Carmon et al. 2018:  it takes                  Hessian-vector products to 

find negative curvature by Hessian power method.

Observation 1: Consider the Hessian matrix at the saddle point, its eigenvectors with 

negative eigenvalue indicate negative curvature direction

Observation 2: For Hessian-Lipschitz functions, Hessian-vector product can be 

approximated via two gradient queries of two near enough points:

• Xu et al. 2017; Allen-Zhu et al. 2017:  it takes                  gradient calls to find negative 

curvature and then escape from saddle points.

End of the story?



Simplicity
Simplicity is of great importance in the design of optimization algorithms

• Empirical observation: simple algorithms often have good performance in practice
• It is hard to train machine learning models and adjust parameters using a complicated 

optimizer

Xu et al. 2017

• Complicated for 
practical use

• Numerically 
instable



Simplicity
Simplicity is of great importance in the design of optimization algorithms

• Empirical observation: simple algorithms often have good performance in practice
• It is hard to train machine learning models and adjust parameters using a complex 

optimizer

Xu et al. 2017

• Complicated for 
practical use

• Numerically 
instable

• Can we have gradient-descent based, more numerically 

stable algorithms with much simpler structure which 

enable possible practical application, while preserving 

the dependence on ?

• Our work answers this question in the affirmative.



Simpler algorithm
• Basic idea: adopt the structure of PAGD (Jin et al. 2017)

Replace it by a simple, gradient-based subroutine that can find 
negative curvature near saddle points



Simpler algorithm
• Basic idea: adopt the structure of PAGD (Jin et al. 2017), while use a simple, gradient-

based subroutine to find negative curvature near saddle points

Near a saddle point, the 

function is well-approximated 

by a quadratic function

The total motion of AGD can 
be decomposed into several 
independent one-
dimensional motions

• Add a perturbation 

and run AGD for 

some time

• Obtain a vector which has a 

large overlap with the negative 

curvature direction



Simpler algorithm
• Basic idea: adopt the structure of PAGD (Jin et al. 2017), while use a simple, gradient-

based subroutine to find negative curvature near saddle points

Simplicity preserving

• Approximately the same structure as PAGD

• No additional hyperparameters compared 
to original PAGD

Numerically stable 
• An additional renormalization step



Quantitative result
• Basic idea: adopt the structure of PAGD (Jin et al. 2017), while use a simple, gradient-

based subroutine to find negative curvature near saddle points



Putting everything together

Simplicity and 
numerical 
stability are 
preserved

Single-looped



Final result

• Matches the iteration number of Allen-Zhu et al. 2017 using a simpler, single-looped 
algorithm with numerical stability.

• In addition, we essentially show the robustness of this algorithm, which may be of 
independent interest.



Extension to stochastic settings

• A stochastic version of the our simple, numerically-stable negative curvature finding 
subroutine:  



Extension to stochastic settings

• Quantitative result:



Numerical experiments
Comparison between our algorithm (ANCGD) and Jin et al. (PAGD)



Conclusions

Main result: A single-looped, simple algorithm for an   -approx. local minimum
using                             iterations. 

Open questions:

• Can we achieve the polynomial speedup in            for more advanced stochastic 
optimization algorithms with complexity                                       (Allen-Zhu et al. 2018) 
or                                    (Fang et al. 2018)?

• How is the performance of our algorithms for escaping saddle points in real-world 
applications, such as tensor decomposition, matrix completion, etc.?


