Escape saddle points by a simple gradient-descent based algorithm

Chenyi Zhang
Tsinghua University

Joint work with Tongyang Li

Nonconvex optimization

Problem:
$$f \colon \mathbb{R}^n \to \mathbb{R}, \quad \operatorname*{arg\,min}_x f(x)$$
 $f(\cdot)$: non-convex function

Core topic in machine learning and optimization theory

A wide range of applications: matrix & tensor decomposition, neural networks, ...

Nonconvex optimization

The most common method for nonconvex optimization: gradient descent (GD)

$$x_{t+1} = x_t - \eta \cdot \nabla f(x_t).$$

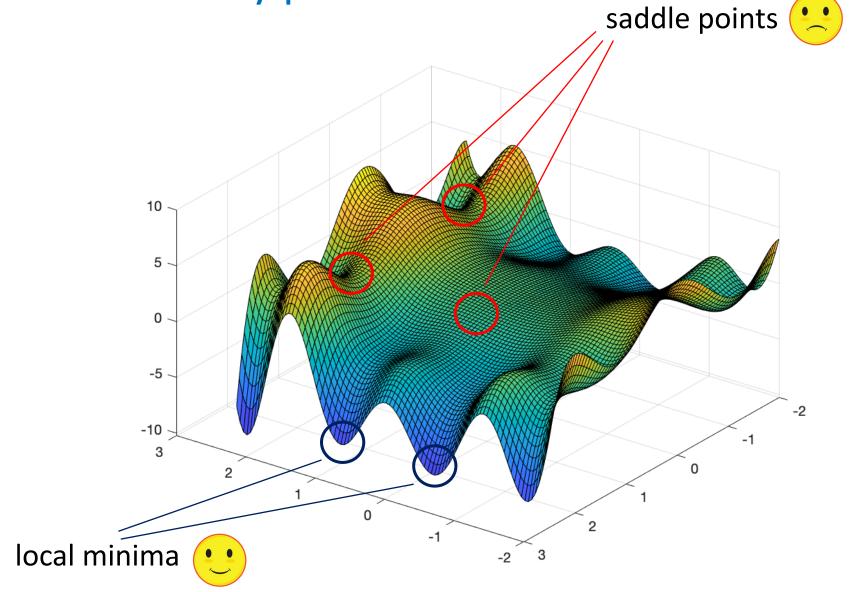
If
$$f$$
 is ℓ -smooth: $\|\nabla f(\mathbf{w}_1) - \nabla f(\mathbf{w}_2)\| \le \ell \|\mathbf{w}_1 - \mathbf{w}_2\| \quad \forall \, \mathbf{w}_1, \mathbf{w}_2 \in \mathbb{R}^n$,

$$t = O(\ell/\epsilon^2) \Rightarrow \|\nabla f(\mathbf{x}_t)\| \leq \epsilon.$$

This is an ϵ -approx. first-order stationary point.

Question: Is this good enough?

First order stationary points



Nonconvex optimization

Common fact about many learning problems:

• Ubiquitous saddle points (including local maxima) can give highly suboptimal solutions

• We would want to escape from saddle points, but finding an ϵ -approx. local minimum x_{ϵ} suffices:

$$\|\nabla f(\mathbf{x}_{\epsilon})\| \leq \epsilon, \quad \lambda_{\min}(\nabla^2 f(\mathbf{x}_{\epsilon})) \geq -\sqrt{\rho\epsilon}.$$

Here f is ρ -Hessian Lipschitz: $\|\nabla^2 f(\mathbf{w}_1) - \nabla^2 f(\mathbf{w}_2)\| \le \rho \|\mathbf{w}_1 - \mathbf{w}_2\| \quad \forall \, \mathbf{w}_1, \mathbf{w}_2 \in \mathbb{R}^n$.

Escaping from saddle points

Oracle	Reference	Iterations	Simplicity
Hessian	Nesterov and Polyak 2006	$O(1/\epsilon^{1.5})$	Single-loop
Hessian-vector product	Agarwal et al.2017; Carmon et al. 2018	$ ilde{O}(\log n/\epsilon^{1.76})$	Nested-loop
Gradient	Xu et al. 2017; Allen-Zhu et al. 2017	$ ilde{O}(\log n/\epsilon^{1.75})$	Nested-loop
Gradient	Jin et al. 2017, 2019	$\tilde{O}(\log^4 n/\epsilon^2)$	Single-loop
Gradient	Jin et al. 2018	$ ilde{O}(\log^6 n/\epsilon^{1.75})$	Single-loop

Our result:

Gradient	this work	$ ilde{O}(\log n/\epsilon^{1.75})$	Single-loop

Two main considerations:

Complexity:

• Reduce the dependence on both accuracy ϵ and dimension n

Simplicity:

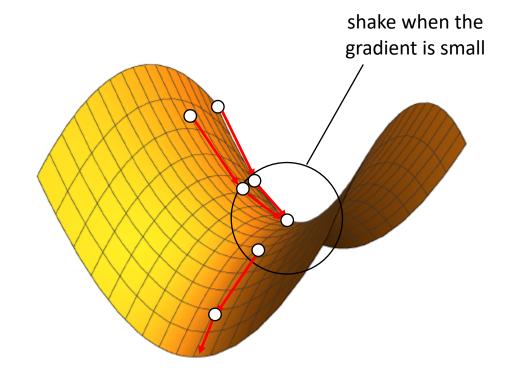
- Simpler oracle
- Simpler structure (single-loop, less hyperparameters)

Escaping from saddle points

The main idea: perturbed gradient descent

Main thoughts:

- Radius of perturbation: If it is too large, then we may backtrack too much. If it is too small, we may need many iterations to leave the saddle.
- Way of perturbation: What's the most efficient approach?
- Gradient descent: Faster versions?



Perturbed accelerated gradient descent (simplified)

Jin et al. 2017

Throughout the algorithm, use Nesterov's accelerated gradient descent (AGD):

$$\mathbf{y}_t \leftarrow \mathbf{x}_t + (1 - \theta)\mathbf{v}_t, \ \mathbf{x}_{t+1} \leftarrow \mathbf{y}_t - \eta \nabla f(\mathbf{y}_t), \ \mathbf{v}_{t+1} \leftarrow \mathbf{x}_{t+1} - \mathbf{x}_t.$$

• If $\|\nabla f(x_t)\| \le \epsilon$ and no perturbation happened in $O(\log n)$ steps: Perturb by the **uniform distribution** in the ball of radius $r = \Theta(\epsilon/\log^5 n)$.

Bottleneck of the algorithm

Fact: Perturbed AGD takes $O(\log n)$ steps to decrease the the Hamiltonian

$$f(\mathbf{x}_t) + \|\mathbf{v}_t\|^2 / 2\eta$$

by $\Omega(1/\log^5 n)$, convergence rate $O(1/\epsilon^{1.75})$. Total cost: $\tilde{\Theta}(\log^6 n/\epsilon^{1.75})$.

• Question: can we do better than uniform perturbation and improve dependence on $\log n$?

Better than uniform perturbation

Intuition: add perturbation in the negative curvature direction

Observation 1: Consider the Hessian matrix at the saddle point, its eigenvectors with negative eigenvalue indicate negative curvature direction

• Agarwal et al. 2017; Carmon et al. 2018: it takes $O(\log n)$ Hessian-vector products to find negative curvature by Hessian power method.

Observation 2: For Hessian-Lipschitz functions, Hessian-vector product can be approximated via two gradient queries of two near enough points:

$$\mathcal{H}(\mathbf{x}) \cdot \Delta \mathbf{x} = \nabla f(\mathbf{x} + \Delta \mathbf{x}) - \nabla f(\mathbf{x}) + O(\|\Delta \mathbf{x}\|^2)$$

• Xu et al. 2017; Allen-Zhu et al. 2017: it takes $O(\log n)$ gradient calls to find negative curvature and then escape from saddle points.

End of the story?

Simplicity

Simplicity is of great importance in the design of optimization algorithms

- Empirical observation: simple algorithms often have good performance in practice
- It is hard to train machine learning models and adjust parameters using a complicated

optimizer

Xu et al. 2017

- Complicated for practical use
- Numerically instable

```
Gradient methods
                                                                                               for Extracting
                                                                                                                               NC
                                                                                                                                          from Noise:
                                Accelerated
NEON^+(f, \mathbf{x}, t, \mathcal{F}, U, \zeta, r)
 1: Input: f, \mathbf{x}, t, \mathcal{F}, U, \zeta, r
  2: Generate \mathbf{y}_0 = \mathbf{u}_0 randomly from the sphere of an Euclidean ball of radius r
 3: for \tau = 0, ..., t do
         if \Delta_{\mathbf{x}}(\mathbf{y}_{	au},\mathbf{u}_{	au})<-rac{\gamma}{2}\|\mathbf{y}_{	au}-\mathbf{u}_{	au}\|^2 then
              return \mathbf{v} = \text{NCFind}(\mathbf{y}_{0:\tau}, \mathbf{u}_{0:\tau})
          end if
          compute (\mathbf{y}_{\tau+1}, \mathbf{u}_{\tau+1}) by (14)
 8: end for
 9: if \min_{\|\mathbf{y}_{\tau}\| \leq U} \hat{f}_{\mathbf{x}}(\mathbf{y}_{\tau}) \leq -2\mathcal{F} then
          let \tau' = \arg\min_{\tau, \|\mathbf{y}_{\tau}\| \le U} \hat{f}_{\mathbf{x}}(\mathbf{y}_{\tau})
          return \mathbf{y}_{\tau'}
12: else
          return 0
14: end if
```

Simplicity

Simplicity is of great importance in the design of optimization algorithms

- Empirical observation: simple algorithms often have good performance in practice
- It is hard to train machine learning models and adjust parameters using a complex optimizer

Xu et al. 2017

- Complicated for practical use
- Numerically instable

- Can we have gradient-descent based, more numerically stable algorithms with much simpler structure which enable possible practical application, while preserving the dependence on log n?
- Our work answers this question in the affirmative.

Simpler algorithm

• Basic idea: adopt the structure of PAGD (Jin et al. 2017)

```
Algorithm 2 Perturbed Accelerated Gradient Descent (\mathbf{x}_0, \eta, \theta, \gamma, s, r, \mathcal{I})
  1: \mathbf{v}_0 \leftarrow 0
  2: for t = 0, 1, ..., do
              if \|\nabla f(\mathbf{x}_t)\| \leq \epsilon and no perturbation in last \mathscr{T} steps then
                      \mathbf{x}_t \leftarrow \mathbf{x}_t + \xi_t \quad \xi_t \sim \text{Unif}(\mathbb{B}_0(r))
  4:
            \mathbf{y}_t \leftarrow \mathbf{x}_t + (1 - \theta)\mathbf{v}_t
  5:
            \mathbf{x}_{t+1} \leftarrow \mathbf{y}_t - \eta \nabla f(\mathbf{y}_t)
            \mathbf{v}_{t+1} \leftarrow \mathbf{x}_{t+1} - \mathbf{x}_t
              if f(\mathbf{x}_t) \leq f(\mathbf{y}_t) + \langle \nabla f(\mathbf{y}_t), \mathbf{x}_t - \mathbf{y}_t \rangle - \frac{\gamma}{2} \|\mathbf{x}_t - \mathbf{y}_t\|^2 then
  8:
                       (\mathbf{x}_{t+1}, \mathbf{v}_{t+1}) \leftarrow \text{Negative-Curvature-Exploitation}(\mathbf{x}_t, \mathbf{v}_t, s)
  9:
```

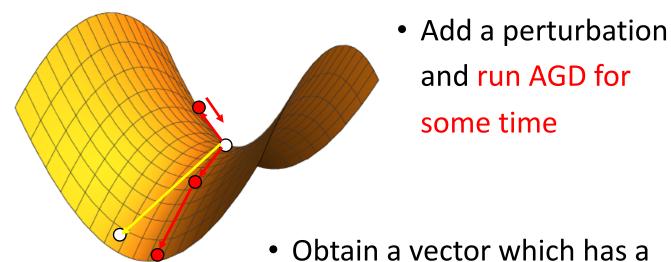
Replace it by a simple, gradient-based subroutine that can find negative curvature near saddle points

Simpler algorithm

• Basic idea: adopt the structure of PAGD (Jin et al. 2017), while use a simple, gradient-based subroutine to find negative curvature near saddle points

Near a saddle point, the function is well-approximated by a quadratic function

The total motion of AGD can be decomposed into several independent onedimensional motions



 Obtain a vector which has a large overlap with the negative curvature direction

Simpler algorithm

Output $y_{\mathscr{T}}/r$.

• Basic idea: adopt the structure of PAGD (Jin et al. 2017), while use a simple, gradient-based subroutine to find negative curvature near saddle points

Accelerated Negative Curvature Finding 1 $\mathbf{y}_0 \leftarrow \text{Uniform}(\mathbb{B}_{\tilde{\mathbf{x}}}(r))$ where $\mathbb{B}_{\tilde{\mathbf{x}}}(r)$ is the 2 ℓ_2 -norm ball centered at $\tilde{\mathbf{x}}$ with radius r; 3 $\mathbf{v}_0 \leftarrow \mathbf{0}$; 4 $\mathbf{for} \ t = 1, ..., \mathscr{T}' \ \mathbf{do}$ 5 $\mathbf{z}_t \leftarrow \mathbf{y}_t + (1 - \theta)\mathbf{v}_t$; 6 $\mathbf{y}_{t+1} \leftarrow \mathbf{z}_t - \eta \nabla f(\mathbf{z}_t)$; 7 $\mathbf{v}_{t+1} \leftarrow \mathbf{y}_{t+1} = \mathbf{y}_t$; 8 $\mathbf{v}_t \leftarrow \mathbf{v}_t \cdot \frac{r}{\|\mathbf{y}_t\|}, \ \mathbf{y}_t \leftarrow \mathbf{y}_t \cdot \frac{r}{\|\mathbf{y}_t\|}$;

Simplicity preserving

- No additional hyperparameters compared to original PAGD
- Approximately the same structure as PAGD

Numerically stable

An additional renormalization step

Quantitative result

• Basic idea: adopt the structure of PAGD (Jin et al. 2017), while use a simple, gradient-based subroutine to find negative curvature near saddle points

Proposition (informal). For any $0 < \delta \le 1$, we specify our choice of parameters:

$$\mathscr{T} = \tilde{O}(\log n/\epsilon^{1/4}), \quad r = \tilde{O}\left(\frac{\delta \epsilon^{1/4}}{\mathscr{T}\sqrt{n}}\right).$$

Then for any $\tilde{\mathbf{x}}$ satisfying $\lambda_{\min}(\nabla^2 f(\tilde{\mathbf{x}})) \leq -\sqrt{\rho \epsilon}$, with probability at least $1 - \delta$, the subroutine **Accelerated Negative Curvature Finding** outputs a unit vector $\hat{\mathbf{e}}$ satisfying

$$\hat{\mathbf{e}}^T \mathcal{H}(\tilde{\mathbf{x}}) \hat{\mathbf{e}} \le -\sqrt{\rho \epsilon}/4,$$

where \mathcal{H} stands for the Hessian matrix of function f, using $\tilde{O}(\log n/\epsilon^{1/4})$ iterations.

Putting everything together

Algorithm 2: Perturbed Accelerated Gradient Descent with Accelerated Negative Curvature Finding($\mathbf{x}_0, \eta, \theta, \gamma, s, \mathcal{T}, r$)

```
1 \mathbf{v}_0 = \mathbf{0}, t_{\text{perturb}} = 0, \tilde{\mathbf{x}} = \mathbf{x}_0;
  2 for t = 0, 1, ..., T do
                if \|\nabla f(\mathbf{x}_t)\| \leq \epsilon and t - t_{perturb} > \mathscr{T} then
                     \tilde{\mathbf{x}} = \mathbf{x}_t:
                    \mathbf{x}_t \leftarrow \text{Uniform}(\mathbb{B}_{\tilde{\mathbf{x}}}(r)) where \text{Uniform}(\mathbb{B}_{\tilde{\mathbf{x}}}(r)) is the \ell_2-norm ball centered at \tilde{\mathbf{x}} with
                      radius r; \mathbf{v}_t \leftarrow \mathbf{0}, t_{\text{perturb}} \leftarrow t;
              if t - t_{perturb} = \mathscr{T} then
  6
              \hat{\mathbf{e}} := rac{\mathbf{x}_t - 	ilde{\mathbf{x}}}{\|\mathbf{x}_t - 	ilde{\mathbf{x}}\|}; \ \mathbf{x}_t \leftarrow 	ilde{\mathbf{x}} - rac{f_{\hat{\mathbf{e}}}'(	ilde{\mathbf{x}})}{4|f_{\hat{\mathbf{e}}}'(	ilde{\mathbf{x}})|} \sqrt{rac{\epsilon}{
ho}} \cdot \hat{\mathbf{e}}, \mathbf{v}_t \leftarrow \mathbf{0};
                \mathbf{z}_t \leftarrow \mathbf{x}_t + (1 - \theta)\mathbf{v}_t;
                \mathbf{x}_{t+1} \leftarrow \mathbf{z}_t - \eta \nabla f(\mathbf{z}_t);
                 \mathbf{v}_{t+1} \leftarrow \mathbf{x}_{t+1} - \mathbf{x}_t;
10
                 if t_{perturb} \neq 0 and t - t_{perturb} < \mathscr{T} then
11
                           \mathbf{x}_{t+1} = \mathbf{x}_{t+1} + \eta \nabla f(\tilde{\mathbf{x}}), \mathbf{v}_{t+1} = \mathbf{v}_{t+1} + \eta \nabla f(\tilde{\mathbf{x}});
12
                      \mathbf{v}_{t+1} \leftarrow r \cdot \frac{\mathbf{v}_{t+1}}{\|\mathbf{x}_{t+1} - \tilde{\mathbf{x}}\|}, \ \mathbf{x}_{t+1} \leftarrow \tilde{\mathbf{x}} + r \cdot \frac{\mathbf{x}_{t+1} - \mathbf{x}}{\|\mathbf{x}_{t+1} - \tilde{\mathbf{x}}\|};
13
                  else
14
                            if f(\mathbf{x}_t) \leq f(\mathbf{z}_t) + \langle \nabla f(\mathbf{z}_t), \mathbf{x}_t - \mathbf{z}_t \rangle - \frac{\gamma}{2} \|\mathbf{x}_t - \mathbf{z}_t\|^2 then
15
                                   (\mathbf{x}_{t+1}, \mathbf{v}_{t+1}) \leftarrow \text{NegativeCurvatureExploitation}(\mathbf{x}_t, \mathbf{v}_t, s);
16
```

Single-looped

Simplicity and numerical stability are preserved

Final result

Theorem 7 (informal). For any $\epsilon > 0$ and any constant $0 < \delta \le 1$, Algorithm 2 satisfies that at least one of the iterations \mathbf{x}_t will be an ϵ -approximate second-order stationary point in

$$\tilde{O}\Big(\frac{(f(\mathbf{x}_0) - f^*)}{\epsilon^{1.75}} \cdot \log n\Big)$$

iterations, with probability at least $1 - \delta$, where f^* is the global minimum of f.

• Matches the iteration number of Allen-Zhu et al. 2017 using a simpler, single-looped algorithm with numerical stability.

• In addition, we essentially show the robustness of this algorithm, which may be of independent interest.

Extension to stochastic settings

 A stochastic version of the our simple, numerically-stable negative curvature finding subroutine:

Algorithm 4: Stochastic Negative Curvature Finding $(\mathbf{x}_0, r_s, \mathcal{T}_s, m)$.

```
1 \mathbf{y}_{0} \leftarrow 0, L_{0} \leftarrow r_{s};

2 \mathbf{for} \ t = 1, ..., \mathcal{T}_{s} \ \mathbf{do}

3 \mathbf{Sample} \ \left\{ \theta^{(1)}, \theta^{(2)}, \cdots, \theta^{(m)} \right\} \sim \mathcal{D};

4 \mathbf{g}(\mathbf{y}_{t-1}) \leftarrow \frac{1}{m} \sum_{j=1}^{m} \left( \mathbf{g}(\mathbf{x}_{0} + \mathbf{y}_{t-1}; \theta^{(j)}) - \mathbf{g}(\mathbf{x}_{0}; \theta^{(j)}) \right);

5 \mathbf{y}_{t} \leftarrow \mathbf{y}_{t-1} - \frac{1}{\ell} (\mathbf{g}(\mathbf{y}_{t-1}) + \xi_{t}/L_{t-1}), \qquad \xi_{t} \sim \mathcal{N}\left(0, \frac{r_{s}^{2}}{d}I\right);

6 L_{t} \leftarrow \frac{\|\mathbf{y}_{t}\|}{r_{s}} L_{t-1} \text{ and } \mathbf{y}_{t} \leftarrow \mathbf{y}_{t} \cdot \frac{r_{s}}{\|\mathbf{y}_{t}\|};

7 Output \mathbf{y}_{\mathcal{T}}/r_{s}.
```

Extension to stochastic settings

Quantitative result:

Theorem 9 (informal). For any $\epsilon > 0$ and any constant $0 < \delta \leq 1$, our algorithm using only stochastic gradient descent satisfies that at least one of the iterations \mathbf{x}_t will be an ϵ -approximate second-order stationary point in

$$\tilde{O}\Big(\frac{(f(\mathbf{x}_0) - f^*)}{\epsilon^4} \cdot \log^2 n\Big)$$

iterations, with probability at least $1 - \delta$, where f^* is the global minimum of f.

Numerical experiments

Comparison between our algorithm (ANCGD) and Jin et al. (PAGD)

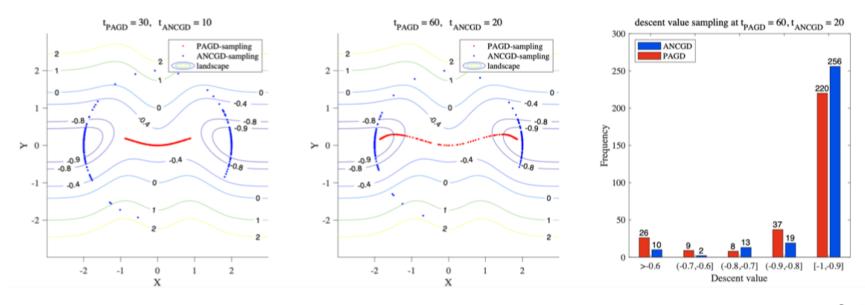


Figure 6: Run ANCGD and PAGD on landscape $f(x_1, x_2) = f(x_1, x_2) = \frac{1}{1 + e^{x_1^2}} + \frac{1}{2} (x_2 - x_1^2 e^{-x_1^2})^2 - 1$.

Parameters: $\eta=0.03$ (step length), r=0.1 (ball radius in PAGD and parameter r in ANCGD), M=300 (number of samplings).

Left: The contour of the landscape is placed on the background with labels being function values. Blue points represent samplings of ANCGD at time step $t_{\text{ANCGD}} = 10$ and $t_{\text{ANCGD}} = 20$, and red points represent samplings of PAGD at time step $t_{\text{PAGD}} = 30$ and $t_{\text{PAGD}} = 60$. ANCGD converges faster than PAGD even when $t_{\text{ANCGD}} \ll t_{\text{PAGD}}$.

Right: A histogram of descent values obtained by ANCGD and PAGD, respectively. Set $t_{\text{ANCGD}} = 20$ and $t_{\text{PAGD}} = 60$. Although we run three times of iterations in PAGD, its performance is still dominated by our ANCGD.

Conclusions

Main result: A single-looped, simple algorithm for an ϵ -approx. local minimum x_{ϵ} using $\tilde{O}(\log n/\epsilon^{1.75})$ iterations.

Open questions:

- Can we achieve the polynomial speedup in $\log n$ for more advanced stochastic optimization algorithms with complexity $\tilde{O}(\operatorname{poly}(\log n)/\epsilon^{3.5})$ (Allen-Zhu et al. 2018) or $\tilde{O}(\operatorname{poly}(\log n)/\epsilon^3)$ (Fang et al. 2018)?
- How is the performance of our algorithms for escaping saddle points in real-world applications, such as tensor decomposition, matrix completion, etc.?