Escape saddle points by a simple
gradient-descent based algorithm

Chenyi Zhang

Tsinghua University

Joint work with Tongyang Li

I HEl Massachusetts
I I Institute of
Technology

Nonconvex optimization

Problem: f:R" - R, argmin f(z) f(+): non-convex function

X

Core topic in machine learning and optimization theory

A wide range of applications: matrix & tensor decomposition, neural

networks, ...

Nonconvex optimization

The most common method for nonconvex optimization: gradient descent (GD)
Xt+1 = Xt — 1 - Vf(Xt).

If f is £-smooth: || Vf(wy) — Vf(ws)|| < l||lwy —ws|| Vwi,wy €R”,
t=0((/e*) = [|[Vf(x)| <e.

This is an e-approx. first-order stationary point.

Question: Is this good enough?

First order stationary points
saddle points

RIS
IR
2288
GRS

local minima 2 3

Nonconvex optimization

Common fact about many learning problems:

» Ubiquitous saddle points (including local maxima) can give highly suboptimal solutions

 We would want to escape from saddle points, but finding an e-approx. local minimum x

suffices:
Vi)l <€ Amin(Vf(%e)) = —/pe.

Here f is p-Hessian Lipschitz: || V2f(w1) — V2f(wo)|| < pllwi — wa|| Vwy,wy € R

Escaping from saddle points

Oracle Reference Iterations Simplicity

Hessian Nesterov and Polyak 2006 O(1/€+°) Single-loop
Hessian-vector product Agarwal et al.2017; Carmon et al. 2018 O(logn/e'7®) Nested-loop
Gradient Xu etal. 2017; Allen-Zhu et al. 2017 O(logn/e™"®) Nested-loop
Gradient Jinet al. 2017, 2019 O(log* n/e?) Single-loop
Gradient Jin et al. 2018 O(log® n/e'7®) Single-loop

Our result:

Gradient this work O(logn/e"™) Single-loop

Two main considerations:

Complexity: Simplicity:
* Reduce the dependence on both e Simpler oracle
accuracy € and dimension n e Simpler structure (single-loop, less

hyperparameters)

Escaping from saddle points

The main idea: perturbed gradient descent

Main thoughts:

* Radius of perturbation: If it is too large, then we
may backtrack too much. If it is too small, we
may need many iterations to leave the saddle.

* Way of perturbation: What’s the most efficient
approach?

 Gradient descent: Faster versions?

shake when the
gradient is small

Perturbed accelerated gradient descent (simplified)
Jinetal. 2017

« Throughout the algorithm, use Nesterov’s accelerated gradient descent (AGD):
Ve < Xt + (1 = 0)ve, Xex1 <= Ve — NVF(Ve)s Vel < Xeg1 — Xz

- If ||[Vf(x¢)|| < e and no perturbation happened in O(logn) steps:
Perturb by thecaniform distributiomin the ball of radius r = O(¢/ log® n).

Bottleneck of the algorithm
Fact: Perturbed AGD takes O(log n) steps to decrease the the Hamiltonian

fxe) + llvell* /21

by ©(1/ log® n), convergence rate O(1/e"7). Total cost: ©(log® n/e!).

* Question: can we do better than uniform perturbation and improve dependence
on logn ?

Better than uniform perturbation

Intuition: add perturbation in the negative curvature direction
Observation 1: Consider the Hessian matrix at the saddle point, its eigenvectors with
negative eigenvalue indicate negative curvature direction

* Agarwal et al. 2017; Carmon et al. 2018: it takes O(log n) Hessian-vector products to
find negative curvature by Hessian power method.

Observation 2: For Hessian-Lipschitz functions, Hessian-vector product can be
approximated via two gradient queries of two near enough points:

H(x) - Ax = Vf(x + Ax) — Vf(x) + O(||Ax]|?)

* Xu et al. 2017; Allen-Zhu et al. 2017: it takes O(logn) gradient calls to find negative
curvature and then escape from saddle points.

End of the story?

Simplicity
Simplicity is of great importance in the design of optimization algorithms

* Empirical observation: simple algorithms often have good performance in practice

* |tis hard to train machine learning models and adjust parameters using a complicated
optimizer

Accelerated Gradient methods for Extracting NC from Noise:
NEONT™(f,x,t, F,U,{,T)

1: Input: f,x,t,F,U,(,r
2: Generate yg = ug randomly from the sphere of an Euclidean ball of radius r
3: for r=0,...,t do
Xu et al. 2017 4 if Ax(yr,ur;) < —%|lyr — u,||? then
5: return v =NCFind(y.r, ug.r)
* Complicated for 6: end if
. 7. compute (y,41,u,41) by (14)
practical use 5 end for B
9: if min”yTHSU fx(y'r) < —2F then
* Numerically 10: let 7' = argmin, |y, <v fx(y7)
. 11: return y,.
instable 12: else
13: return 0

: end if

—
S

Simplicity
Simplicity is of great importance in the design of optimization algorithms

* Empirical observation: simple algorithms often have good performance in practice

* It is hard to train machine learning models and adjust parameters using a complex
optimizer

Xu et al. 2017 * Can we have gradient-descent based, more numerically

. Complicated for stable algorithms with much simpler structure which

practical use enable possible practical application, while preserving
* Numerically the dependence on log n?
instable

e Our work answers this question in the affirmative.

Simpler algorithm

* Basic idea: adopt the structure of PAGD (Jin et al. 2017)

Algorithm 2 Perturbed Accelerated Gradient Descent (x¢,n,6,7,s,r,)

1: vo< 0

2: fort=0,1,..., do

3: if |V f(x¢)|| < e and no_perturbation in last 7 steps then
Xt < Xt + & @N Unif (B (D

y: < x¢+ (1 —0)vy

Xer1 < Ye — MV (Ye)

Vitl = X1 — Xt

if f(x¢) < f(ye) + (Vf(ye), X — yt) — 3 |Ix¢ — y¢||* then
(x¢41, Vi+1) < Negative-Curvature-Exploitation(x, vy, s)

|

Replace it by a simple, gradient-based subroutine that can find
negative curvature near saddle points

Simpler algorithm

» Basic idea: adopt the structure of PAGD (Jin et al. 2017), while use a simple, gradient-
based subroutine to find negative curvature near saddle points

Near a saddle point, the * Add a perturbation
and run AGD for

some time

function is well-approximated

by a quadratic function

The total motion of AGD can * Obtain a vector which has a
be decomposed into several large overlap with the negative
independent one- curvature direction

dimensional motions

Simpler algorithm

» Basic idea: adopt the structure of PAGD (Jin et al. 2017), while use a simple, gradient-
based subroutine to find negative curvature near saddle points

Accelerated Negative Curvature Finding Simplicity preserving

1 yo < Uniform(Bx(r)) where Bx () is the . -
2 {3-norm ball centered at X with radius r; No additional hyperparameters compared

3 vo < 0; to original PAGD
4 fort=1,...,.7 do
z; < yi + (1 — 0)vy;

Yi+1 < 2zt — NV f(Z);
Viiq <— V*—E—L_ Yi.

Ve Ve Ty Yt < Y o * An additional renormalization step
9 Outputyo/r.

* Approximately the same structure as PAGD

Numerically stable

R N A W

Quantitative result

» Basic idea: adopt the structure of PAGD (Jin et al. 2017), while use a simple, gradient-
based subroutine to find negative curvature near saddle points

Proposition (informal). For any 0 < 0 < 1, we specify our choice of parameters:

del/4
7vi)

Then for any x satisfying Amin(V2f (X)) < —./p€, with probability at least 1 — 6, the subroutine
Accelerated Negative Curvature Finding outputs a unit vector € satisfying

e’ H(x)e < —+/pe/4,

where H. stands for the Hessian matrix of function f, using O(logn/e'/*) iterations.

T =O0(logn/e’?), r= O(

Putting everything together

Algorithm 2: Perturbed Accelerated Gradient Descent with Accelerated Negative Curvature
Finding(XOa Uk 91 Y S, '-0/-’7 7")

1 vo = 0, tperuy = 0, X = Xo;
2 fort=0,1,...,7 do

3 if |V f(x:)| < eandt— tperurs > 7 then .

y iy Single-looped
5 x; < Uniform(Bx(r)) where Uniform(Bx(r)) is the £2-norm ball centered at X with

| radiusr; v < 0, pertury <

6 if t — tperurs = 7 then

7 é:= =X x, % — ool f€. 6, v, 0; Simplicity and
s | 2 x+(1=0)vs numerical

9 | Xeyr 2 — NV f(2e); stability are

10 Vitl € X1 — Xy

11 | i tpernrs # 0 and t — tperney < 7 then preserved

12 Xt+1 = Xt+1 + NV F(X), Vig1 = Vig1 + ?7Vf~(5'i);

3 || Ve &7 e X e X e
14 else

15 if f(x:) < f(ze) + (V(2e), %Xt — 2¢) — 3%t — 2¢|* then

16 | (%¢41, Ve41) «NegativeCurvatureExploitation(x;, v,);

Final result

Theorem 7 (informal). For any € > 0 and any constant 0 < 0 < 1, Algorithm 2 satisfies that at
least one of the iterations X; will be an e-approximate second-order stationary point in

O((f(xsl).;) - log n)

iterations, with probability at least 1 — 0, where f* is the global minimum of f.

* Matches the iteration number of Allen-Zhu et al. 2017 using a simpler, single-looped
algorithm with numerical stability.

* |In addition, we essentially show the robustness of this algorithm, which may be of
independent interest.

Extension to stochastic settings

* A stochastic version of the our simple, numerically-stable negative curvature finding
subroutine:

Algorithm 4: Stochastic Negative Curvature Finding(xg, rs, 75, m).

1 yo < 0, Lo < 7g;

2 fort=1,..., 7, do

3 | Sample {9(1) 62, ... oM} ~ D;

4 | g(yi1) ¢ s l(g(xo—i—yt 1509 — g(x0;0));

5 Yt < Yi-1— _(g(Yt 1) +&/Li—1), E ~ (0, ESI);
o | Lo BlLeqandy: e iy

7 Output ya/Ts.

Extension to stochastic settings

e Quantitative result:

Theorem 9 (informal). For any € > 0 and any constant 0 < 6 < 1, our algorithm using only
stochastic gradient descent satisfies that at least one of the iterations x; will be an e-approximate

second-order stationary point in

O((f(xo) - f7) log? n)

64

iterations, with probability at least 1 — 0, where f* is the global minimum of f.

Numerical experiments
Comparison between our algorithm (ANCGD) and Jin et al. (PAGD)

tpacp =30 tuncop = 10 toacp =90 tancap =20 o, descent value sampling m"r'/\(il)zw'tAN(‘mﬁ20
PAGD-sampling © PAGD-sampling I ANCGD
2 « ANCGD-sampling g © ANCGD-sampling I PAGD
2 landscape 2 landscape 258
1 . . 2 1 . 250 ¢ {
. .
0 0 0 . 0 20
1 0 04 1 X o 04 00
08 ° 08}) .
v 09 . \ 03® &
e T o ™ S
> 0 S~—— > 0 : 2,150
09 D4 ! 09°% 04 4
08 +og 08 \ 0.8 e
1 0A \ 0 1 04 0 100
0 0
1) 1
R 1 2 s 1 50 | a7
2 2 2 19
Iw 9, g 13
. , oL m2 mill
' o " 1 o I >06 (-07.06] (0807 (-09-08] [-1.09]
X X N Descent value
2,2
. . 1 1 2 _—x
Figure 6: Run ANCGD and PAGD on landscape f(z1,22) = f(z1,%2) = —— + 5 (22 — z1e”"1)" — 1.
x
14+e™1

Parameters: n = 0.03 (step length), » = 0.1 (ball radius in PAGD and parameter r in ANCGD), M = 300
(number of samplings).

Left: The contour of the landscape is placed on the background with labels being function values. Blue
points represent samplings of ANCGD at time step tancep = 10 and tancep = 20, and red points represent
samplings of PAGD at time step tpagp = 30 and tpagp = 60. ANCGD converges faster than PAGD even when
tancep K TpaGD.

Right: A histogram of descent values obtained by ANCGD and PAGD, respectively. Set tancep = 20 and
teagp = 60. Although we run three times of iterations in PAGD, its performance is still dominated by our
ANCGD.

Conclusions

Main result: A single-looped, simple algorithm for an e-approx. local minimum x.

1.75)

using O(logn/e iterations.

Open questions:

e Can we achieve the polynomial speedup in~log n for more advanced stochastic
optimization algorithms with complexity O(poly(logn)/e’®) (Allen-Zhu et al. 2018)
or O(poly(logn)/e3) (Fang et al. 2018)?

* How is the performance of our algorithms for escaping saddle points in real-world
applications, such as tensor decomposition, matrix completion, etc.?

