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Highlights

- Law of iterated logarithm for distributed stochastic approx.

- Convergence rate along sample paths where algorithm converges
- Weaker assumptions on the gossip matrix and stepsizes

- A novel concentration result for a sum of martingale differences

- Applies to distributed TD(0) with linear function approximation



Background

- Reinforcement Learning
- Train machines the same way an infant learns
- Interact with the environment and figure out the optimal action
sequence needed to complete a given task
- Stochastic Approximation (SA)
- Theory provides toolkit for rigorously analyzing RL algorithms
- Iterative algorithms useful to find zeroes or optimal points of

functions, for which only noisy evaluations are possible

- This work: Analyze distributed SA algorithms useful in MARL



Multi-agent Reinforcement Learning

- Cooperative MARL

- Multiple agents continually interact with an environment
- Agents picks local actions

- Environment reacts to the joint action by transitioning to a new
state and giving each agent a local reward

- Agents gossip about local computations with each other

- Aim: Find action policies that maximize collective rewards

- Usage : Gaming, Robotics, Communications, Power Grids, Finance



Distributed Stochastic Approximation

- m agents, directed graph G, matrix W = (W;;) € [0,1]™*"
- Wj € [0,1] denotes the strength of the edgej — 1in g

- Update rule at agent i

m
X1 (1) =Y Wi xa() +an [ hi(xa)  + Maga(i) ],
1xd =1 1xd hj:Rm>d —Rd 1xd

where x(i) denotes the i-th row of the matrix x and

Mp11(i) is the noise in the estimate of h;j(x,)

- Joint Update Rule: Xp41 = Wy + an[h(Xn) + Mn41]
-~

mxd



Main Result: Law of Iterated Logarithm

- Let x, be a potential limit of the DSA algorithm
- Let &(x,) be the event {x, — x.} and tpy1 = > p_o

- Then, there exists some deterministic constant C > 0 such that

lim sup [y log tn1] ~"2||xn — Xl < C  a.s. on £(x,).
n—o0

- Why Law of Iterated Logarithm (LIL)?

Proof uses an LIL for a sum of scaled martingale differences



Assumptions on the Gossip Matrix W

A;. Wis an irreducible aperiodic row stochastic matrix
3 a unique row vector * € R™ such that tW ==

Thm. 1in [Mathkar and Borkar, 2016]: A DSA algorithm converges
to an invariant set of the m-fold product of the ODE

y(t) = o h(7y()

Txm mxd

Any such invariant set is a subset of S := {17y : y € R} c R™*4

Let x, = 1"y,, where y, is an asymptotically stable equilibrium
of the above ODE (need not be the only attractor)



Assumptions on h

A,. There exists a neighbourhood U/ of x, such that, for x € U,
h(x) = —1T7(x = x)A + 1" 7f1(x) + (1= 1" 7)(B + fo(x)),
where
A € R9%4 is positive definite, i.e, yAy" > 0 forally # 0,
B € R™*? is some constant matrix,
f, U — R™*9 is some arbitrary continuous function, while

fi : U — R™<9 is another continuous function such that
17 A = O 7 (x = x|, as X = X, (1)

under some norm || - || and for some a > 1



Assumptions on Stepsize

Ajs. (ap) is either of Type 1 or Type .
Type 1: a(n) = ap/n for a suitably large ag
Type v : Cn=7 and n~7(logn)" for v € (0,1)

~v > 2/b, where b is the constant that is defined on the next slide



Assumptions on Noise

Ay, Let Fy = o(Xo, My, ..., My) and E(X.) = {Xn = X«}

E(Mp4q]Fn) =0 as.

FC>0st [|QMpq] S C(T+ 1Q(Xn — X4)]1) a.s. on E(X.),

whereQ:=1—-1"n

3 a non-random positive semi-definite matrix M such that

lim E(M,_ 7 7Mpgi | Fo) =M as. on E(x.)

n—oo

3 b > 2 such that sup,so E(||mMni1[°|Fn) < 0o a.s. on E(x,).



Distributed TD(0) with Linear Function Approximation

- Useful for policy evaluation in MARL

- Our result applies since all assumptions hold in this case



Comparison to Existing Literature

- Existing results on convergence rates mainly look at expectation
bounds or the CLT. However, these

- either require the gossip matrix to be doubly stochastic
- or require stepsizes to be square-summable

- do not say about the decay rates along different sample paths
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Future Directions

- Scaling matrix (i.e,, A) in each h; needs to be the same
- Dynamic communication protocols, i.e.,, W changes with time
- Two-timescale distributed SA algorithms

- Distributed Q-learning






