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Model for

The Risk-averse Heteroscedastic Bayesian Optimization (RAHBO) Algorithm

Optimism under uncertainty 

Convergence guarantees (informal):
Under certain assumptions (see the paper for details), 
RAHBO attains sublinear regret.
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- Theoretical regret bounds 

- Empirical results on SwissFEL simulator and ML model tuning 

Goal:

- Incorporate risk into exploration-exploitation trade-off
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Summary 

Our contributions:

- Mean-variance approach for Bayesian optimization

- Practical algorithm based on optimism under the face of uncertainty

- Theoretical regret bounds 

- Empirical results on SwissFEL simulator and ML model tuning 

Goal:

- Avoid cost of failure due to noisy realizations in high-stakes applications

- Incorporate risk into exploration-exploitation trade-offDrop by our poster for more details : )
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