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Topic: Convergence analysis of mean field neural networks.

Mean field neural networks exhibit global convergence and adaptivity.

However, this model is difficult to optimize in general.
A structural assumption or regularization is needed for efficient optimization.

Contribution: We develop Particle Dual Averaging for KL-regularized problem.
We give quantitative convergence guarantees in discrete-time setting.

To obtain an e-accurate solution,
lteration complexity: O(e~3), Particle complexity (# of neurons): O(¢~2).




Optimization for Two-layer NNs

* Risk minimization [(z,y) : loss function,

min Exy)~pllg(X),Y),

squared loss: I(z,y) = 0.5(2 — y)?, logistic loss: I(z,y) = log(1 + exp(—yz)).
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Optimization for Two-layer NNs

* Risk minimization [(z,y) : loss function,

min Exy)~pllg(X),Y),

squared loss: I(z,y) = 0.5(2 — y)?, logistic loss: I(z,y) = log(1 + exp(—yz)).

» Two-layer neural networks © = (a,,b,)™ 1, [ (a,)7eq
1 — - .
he(x) = m Tz::l aro (b, @), - (b )7Ly

— Nonconvex optimization problems
(a,)™, are fixed in the theory.

Gradient-based method converges to
a stationary point : Ve £(©) = 0.

Global minimum

Local minimum .
Global minimum

Convex problem Nonconvex problem



Common Approach

Key: characterize the function space where optimization performs.

Convexity w.r.t the function
[((g+&)(2),y) = U(g(x),y) + 0:U(2, y)| =g (x) ().

E.g.) squared loss: I(z,y) = 0.5(z — y)*, logistic loss: I(z,y) = log(1 + exp(—yz)) .




Common Approach

Key: characterize the function space where optimization performs.
Convexity w.r.t the function
[((g+&)(x),y) = U(g(x),y) + 012, y)| =g ()€ ()

E.g.) squared loss: I(z,y) = 0.5(z — y)*, logistic loss: I(z,y) = log(1 + exp(—yz)) .

e Mean field [Nitanda & Suzuki (2017)], [Chizat & Bach (2018)], [Mei, Montanari, & Nguyen (2018)]
Coefficient: 1/m,  learning rate: O(m).

Function space: probability measures.

* Neural tangent kernel (NTK) [Jacot, Gabriel, & Hongler (2018)]
Coefficient: 1/4/m, learning rate: O(1).
Function space: reproducing kernel Hilbert space (RKHS) associated with NTK.




Adaptive Learning Aspect

The target function is a single neuron model with parameter wx .

The figure plots the cos similarity between wx« and top-5 singular vectors of the parameter.
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Mean field neural network shows the adaptivity to the low dimensional structure.
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Related Work

« Convergence analysis
* [Nitanda & Suzuki (2017)] Relationship between the gradient descent and Wasserstein gradient flow.
* [Chizat & Bach (2018)], [Mei, Montanari, & Nguyen (2018)]
Global convergence analysis for 2-NN with ReLU and bounded smooth activations.
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« Convergence rate analysis in the continuous-time setting
* [Rotskoff, Jelassi, Bruna, & Vanden-Eijnden (2019)]
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Related Work

« Convergence analysis
* [Nitanda & Suzuki (2017)] Relationship between the gradient descent and Wasserstein gradient flow.
* [Chizat & Bach (2018)], [Mei, Montanari, & Nguyen (2018)]
Global convergence analysis for 2-NN with ReLU and bounded smooth activations.
« Convergence rate analysis in the continuous-time setting
* [Rotskoff, Jelassi, Bruna, & Vanden-Eijnden (2019)]

Sublinear convergence rate for the neuron birth-death dynamics.
* [Javanmard, Mondelli, & Montanari (2019)]

Linear convergence rate for the strong concave target function.
* [Hu, Ren, Siska, & Szpruch (2019)] KL-divergence regularization.
Under strong regularization, Linear convergence of mean field Langevin.

« Convergence rate analysis in the discrete-time setting
 [Chizat (2019)], [Akiyama & Suzuki (2021)] Local linear convergence under structural assumption.

The most relevant work.

Convergence rate analysis is nontrivial and requires an additional assumption or regularization.

Remark: In parallel to our work, [Bou-Rabee and Eberle (2021)] shows a similar result on specific loss functions.



Mean field Models

Element of mean field model: h(6, -) E.g) h(b,2) =ac(b' ), (0 = (a,b)).
Parameter: © = (6,.)/", (0, ~ q(0)d0)

Linear w.r.t. 4.

h@@j):%Zh(emx) )= / h(6, 2)q(6)d6
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Mean field Models

Element of mean field model: h(6, -) E.g) h(b,2) =ac(b' ), (0 = (a,b)).
Parameter: © = (6,.)/", (0, ~ q(0)d0)

Linear w.r.t. 4.

h@@:):%Zh(emx) )= / h(6, 2)q(6)d6

Loss \ Loss
E[l(he(X),Y)] o E [I(he(X),Y)]
Nonconvex w.r.t. ©. Convex w.r.t. q.

The diagram suggests the optimization in the space of probability measures.

16



Particle Based Approach i ssuieon

Approach: Optimize a distribution via optimization of m-particles (6,)r~; (random variables).
Optimization of the distribution is getting accurate as m — oo,
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Particle Based Approach i ssuieon

Approach: Optimize a distribution via optimization of m-particles (6,)r~; (random variables).
Optimization of the distribution is getting accurate as m — oo,

Mean field model: he(z) = = > h(0,, x), initialization: 6% ~ 140

T om

600 = (O, 6 = (B:),

Gradient Descent

>

o) =00 —poy £(0).
7 g 7
07(00) / 07(41)/

The update of parameter ©© — @M implicitly updates its distribution: (@ — y1)

— GD on mean field model implicitly optimizes the parameter distribution: min, £(u).
21



Regularized Empirical Risk Minimization

KL-regularized empirical risk minimization over the probability space:

min{ Zl )]s yi) + MEq[[10]]3 ]+A2Eq[10g(Q(9))]}-

q€P>

Kullback-Leibler divergence to zero-mean Gaussian

P, : the set of smooth positive densities with well-defined second moment and entropy.
E, denotes the expectation w.r.t 6 ~ ¢(0)d0.
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Regularized Empirical Risk Minimization

KL-regularized empirical risk minimization over the probability space:

ggg;{ Zl )], yi) + AEq[[10]]3 ]+A2Eq[10g(Q(9))]}-

Kullback-Leibler divergence to zero-mean Gaussian

P, : the set of smooth positive densities with well-defined second moment and entropy.
E, denotes the expectation w.r.t 6 ~ ¢(0)d0.

— Develop new methods with the convergence rate analysis by exploiting
the convexity of the loss function w.r.t. the probability density.

— Quantitative convergence guarantees in discrete-time setting.

23



PDA Method

 Gradient Descent .
O = (1 —2nx1)0) — gz 0:1(gew (i), y:)0ah (0, z;).

=1
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PDA Method

 Gradient Descent .
o+D = (1 —2nA )6 — 7 Y 0:U(gow (i), yi)Oeh (61, ;).
n

i=1 Major differences from GD.

* Particle Dual Averaging (a variant of noisy gradient descent)

277)\125 n i
pl+1) _ (1 _ o(F) _ h(0W 1, 5 (k)
" Aa(t+2)) 7" nAQ(t+2)(t+1);w oh(0:"; xi)++/2nG;
) (G ~ N (0, 1))
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PDA Method

 Gradient Descent ,
o+D = (1 —2nA )6 — 7 Y 0:U(gow (i), yi)Oeh (61, ;).
n

i=1 Major differences from GD.

* Particle Dual Averaging (a variant of noisy gradient descent)

277)\175 n -
o+l — (1 — k) — Y widgh(0), )+ /20,
7“ ot +2)) 7 T g 1) & VG
} (¢~ N(0, 1))

g\

gl

Double loops algorithm Outer-loop:

® o
DA updates Gibbs distributions.
o © ) ® o
® (t) 09
o o/
Inner-loop:

The update can be approximated by
Langevin algorithm using finite-particles.

(Remark: PDA can be also applied to expected risk minimization.) ”

(Inner-loop) Run Langevin Monte Carlo to approximate Gibbs
distribution ¢ defined by {w; }i; .

(Outer-loop) Update {w; };—, based on dual averaging method
so that Gibbs distributions {¢{”’}; converges to the solution.




ldea behind Mean field Limit of PDA

* The problem we want to solve is an entropic regularized nonlinear functional:

mm{ Zz

nonlinear w.r.t.q. linear w.r.t.q.

), yi) + MEq[]|0]13] + AquUOg(CJ(@))]} -
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ldea behind Mean field Limit of PDA

* The problem we want to solve is an entropic regularized nonlinear functional:

mm{ Zl )]s yi) + Mg [[10]]3 ]+A2Eq[10g(Q(9))]}-

nonlinear w.r.t.q. linear w.r.t.q.

* Linearize this based on DA method and obtain an entropic regularized linear functional:

min{E,[f] + E, log(q)]}.

linear w.r.t.q.
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ldea behind Mean field Limit of PDA

* The problem we want to solve is an entropic regularized nonlinear functional:

mm{ Zl )]s yi) + Mg [[10]]3 ]+A2Eq[10g(Q(9))]}-

linear w.r.t.q.

nonlinear w.r.t.q.

* Linearize this based on DA method and obtain an entropic regularized linear functional:

min{E,[f] + E, log(q)]}.

linear w.r.t.q.
3| EEE Initialized gV
The minimizer is the Gibbs distribution oc exp(—f). = iermediate g b Mo
LMC converges to this distribution up to O(n)-error. "%2 engevin flerates
(m)
Q(k—i—l) — e(k) _ nvefw(k)) + /_an(k)'
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Convergence Analysis

Theorem. Under appropriate assumptions:
(Outer loop complexity)

min_ L(¢") - L(¢*) = O(1/T).

(We ignore A1, A for simplicity)
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Convergence Analysis

Theorem. Under appropriate assumptions:
(Outer loop complexity)
min ﬁ(q(t)) — E(q*) — O(I/T) ( We ignore A1, A2 for simplicity)

(Inner loop complexity) k; = O (t? exp(16/A2) /A7) iteration is sufficient at
t-th outer loop to guarantee the above convergence.
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Convergence Analysis

Theorem. Under appropriate assumptions:
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lteration complexity: O(e~3), Particle complexity: O(e~2).

Remark
« We use restarting scheme to guarantee the particle complexity.
 |nner and total complexities can be reduced by using more efficient

sampling than Langevin MC. -




Convergence Analysis

Theorem. Under appropriate assumptions:

(Outer loop complexity)

min  £(¢"W) — L£(¢*) = O(1/T). (We ignore A1, A for simplicity)
te{l,...,T}

(Inner loop complexity) k; = O (t? exp(16/A2) /A7) iteration is sufficient at

t-th outer loop to guarantee the above convergence.

(Total) To obtain €e-accurate solution,

Objective

lteration complexity: O(e~3), Particle complexity: O(e~2).

10-3 — L£@®)=r(g+)
s (1)
Remark 1 Ouligi loop step;02
« We use restarting scheme to guarantee the particle complexity. (a) objective value
 |nner and total complexities can be reduced by using more efficient (regression).

sampling than Langevin MC. -



Summary |

J \

« We study the optimization of mean field neural networks for

KL-regularized problems over the space of distributions.

qEP2
« Utilizing the convexity, we give the quantitative convergence guarantees:

teration complexity: O(e~3), Particle complexity: O(e~2).

Future work:

More efficient optimization methods inspired by finite-dimensional optimization.

min { Zl ) + ME[I0113) + Aqu[logm(e))]}.

(ar)r 1

i (br);‘n=1
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