Particle Dual Averaging: Optimization of Mean Field Neural Network with Global Convergence Rate Analysis

Atsushi Nitanda Denny Wu Taiji Suzuki

NeurlPS2021 (ONLINE)

Outline

Topic: Convergence analysis of mean field neural networks.

Mean field neural networks exhibit global convergence and adaptivity.

Outline

Topic: Convergence analysis of mean field neural networks.

Mean field neural networks exhibit global convergence and adaptivity.

However, this model is difficult to optimize in general.

A structural assumption or regularization is needed for efficient optimization.

Outline

Topic: Convergence analysis of mean field neural networks.

Mean field neural networks exhibit global convergence and adaptivity.

However, this model is difficult to optimize in general. A structural assumption or regularization is needed for efficient optimization.

Contribution: We develop Particle Dual Averaging for KL-regularized problem. We give quantitative convergence guarantees in discrete-time setting.

To obtain an ϵ -accurate solution, lteration complexity: $\tilde{O}(\epsilon^{-3})$, Particle complexity (# of neurons): $\tilde{O}(\epsilon^{-2})$.

Optimization for Two-layer NNs

• Risk minimization l(z,y): loss function,

$$\min_{g:2NN} \mathbb{E}_{(X,Y)\sim\rho} l(g(X),Y),$$

squared loss: $l(z,y) = 0.5(z-y)^2$, logistic loss: $l(z,y) = \log(1 + \exp(-yz))$.

Optimization for Two-layer NNs

• Risk minimization l(z,y): loss function,

$$\min_{g:2NN} \mathbb{E}_{(X,Y)\sim\rho} l(g(X),Y),$$

squared loss: $l(z,y) = 0.5(z-y)^2$, logistic loss: $l(z,y) = \log(1 + \exp(-yz))$.

• Two-layer neural networks $\Theta = (a_r, b_r)_{r=1}^m$,

$$h_{\Theta}(x) = \frac{1}{m} \sum_{r=1}^{m} a_r \sigma(b_r^{\top} x).$$

 $(a_r)_{r=1}^m$ are fixed in the theory.

Optimization for Two-layer NNs

• Risk minimization l(z,y): loss function,

$$\min_{g:2NN} \mathbb{E}_{(X,Y)\sim\rho} l(g(X),Y),$$

squared loss: $l(z,y) = 0.5(z-y)^2$, logistic loss: $l(z,y) = \log(1 + \exp(-yz))$.

• Two-layer neural networks $\Theta = (a_r, b_r)_{r=1}^m$,

$$\Theta = (a_r, b_r)_{r=1}^m,$$

$$h_{\Theta}(x) = \frac{1}{m} \sum_{r=1}^{m} a_r \sigma(b_r^{\top} x).$$

→ Nonconvex optimization problems

Nonconvex problem

 $(a_r)_{r=1}^m$ are fixed in the theory.

Gradient-based method converges to a stationary point : $\nabla_{\Theta} \mathcal{L}(\Theta) = 0$.

Common Approach

Key: characterize the function space where optimization performs.

Convexity w.r.t the function

$$l((g+\xi)(x),y) \ge l(g(x),y) + \partial_z l(z,y)|_{z=g(x)}\xi(x).$$

E.g.) squared loss: $l(z,y) = 0.5(z-y)^2$, logistic loss: $l(z,y) = \log(1 + \exp(-yz))$.

Common Approach

Key: characterize the function space where optimization performs.

Convexity w.r.t the function

$$l((g+\xi)(x),y) \ge l(g(x),y) + \partial_z l(z,y)|_{z=g(x)} \xi(x).$$

E.g.) squared loss: $l(z,y) = 0.5(z-y)^2$, logistic loss: $l(z,y) = \log(1 + \exp(-yz))$.

• Mean field [Nitanda & Suzuki (2017)], [Chizat & Bach (2018)], [Mei, Montanari, & Nguyen (2018)]

Coefficient: 1/m, learning rate: O(m).

Function space: probability measures.

• Neural tangent kernel (NTK) [Jacot, Gabriel, & Hongler (2018)]

Coefficient: $1/\sqrt{m}$, learning rate: O(1).

Function space: reproducing kernel Hilbert space (RKHS) associated with NTK.

Adaptive Learning Aspect

The target function is a single neuron model with parameter w_st .

The figure plots the cos similarity between w_* and top-5 singular vectors of the parameter.

Mean field neural network shows the adaptivity to the low dimensional structure.

Convergence analysis

- [Nitanda & Suzuki (2017)] Relationship between the gradient descent and Wasserstein gradient flow.
- [Chizat & Bach (2018)], [Mei, Montanari, & Nguyen (2018)]
 Global convergence analysis for 2-NN with ReLU and bounded smooth activations.

Convergence analysis

- [Nitanda & Suzuki (2017)] Relationship between the gradient descent and Wasserstein gradient flow.
- [Chizat & Bach (2018)], [Mei, Montanari, & Nguyen (2018)]
 Global convergence analysis for 2-NN with ReLU and bounded smooth activations.

Convergence rate analysis in the continuous-time setting

- [Rotskoff, Jelassi, Bruna, & Vanden-Eijnden (2019)]
 Sublinear convergence rate for the neuron birth-death dynamics.
- [Javanmard, Mondelli, & Montanari (2019)] Linear convergence rate for the strong concave target function.
- [Hu, Ren, Siska, & Szpruch (2019)] KL-divergence regularization.

 Under strong regularization, Linear convergence of mean field Langevin.

The most relevant work.

Convergence analysis

- [Nitanda & Suzuki (2017)] Relationship between the gradient descent and Wasserstein gradient flow.
- [Chizat & Bach (2018)], [Mei, Montanari, & Nguyen (2018)]
 Global convergence analysis for 2-NN with ReLU and bounded smooth activations.

Convergence rate analysis in the continuous-time setting

- [Rotskoff, Jelassi, Bruna, & Vanden-Eijnden (2019)]
 Sublinear convergence rate for the neuron birth-death dynamics.
- [Javanmard, Mondelli, & Montanari (2019)] Linear convergence rate for the strong concave target function.
- [Hu, Ren, Siska, & Szpruch (2019)] KL-divergence regularization.

 Under strong regularization, Linear convergence of mean field Langevin.

The most relevant work.

Convergence rate analysis in the discrete-time setting

• [Chizat (2019)], [Akiyama & Suzuki (2021)] Local linear convergence under structural assumption.

Convergence analysis

- [Nitanda & Suzuki (2017)] Relationship between the gradient descent and Wasserstein gradient flow.
- [Chizat & Bach (2018)], [Mei, Montanari, & Nguyen (2018)]
 Global convergence analysis for 2-NN with ReLU and bounded smooth activations.

Convergence rate analysis in the continuous-time setting

- [Rotskoff, Jelassi, Bruna, & Vanden-Eijnden (2019)]
 Sublinear convergence rate for the neuron birth-death dynamics.
- [Javanmard, Mondelli, & Montanari (2019)]
 Linear convergence rate for the strong concave target function.
- [Hu, Ren, Siska, & Szpruch (2019)] KL-divergence regularization. Under strong regularization, Linear convergence of mean field Langevin.

The most relevant work.

Convergence rate analysis in the discrete-time setting

• [Chizat (2019)], [Akiyama & Suzuki (2021)] Local linear convergence under structural assumption.

Convergence rate analysis is nontrivial and requires an additional assumption or regularization.

Remark: In parallel to our work, [Bou-Rabee and Eberle (2021)] shows a similar result on specific loss functions.

Mean field Models

Element of mean field model: $h(\theta, \cdot)$ E.g.) $h(\theta, x) = a\sigma(b^{\top}x), (\theta = (a, b)).$

Parameter: $\Theta = (\theta_r)_{r=1}^m, (\theta_r \sim q(\theta)d\theta)$

Linear w.r.t. q.

$$h_{\Theta}(x) = \frac{1}{m} \sum_{r=1}^{m} h(\theta_r, x) \xrightarrow{m \to \infty} h_q(x) = \int h(\theta, x) q(\theta) d\theta$$

Mean field Models

Element of mean field model:
$$h(\theta,\cdot)$$
 E.g.) $h(\theta,x) = a\sigma(b^{\top}x), (\theta = (a,b)).$ Parameter: $\Theta = (\theta_r)_{r=1}^m, (\theta_r \sim q(\theta) \mathrm{d}\theta)$ Linear w.r.t. q .
$$h_{\Theta}(x) = \frac{1}{m} \sum_{r=1}^m h(\theta_r,x) \xrightarrow{m \to \infty} h_q(x) = \int h(\theta,x) q(\theta) \mathrm{d}\theta$$
 Loss
$$\mathbb{E}\left[l(h_{\Theta}(X),Y)\right] \xrightarrow{m \to \infty} \mathbb{E}\left[l(h_q(X),Y)\right]$$
 Nonconvex w.r.t. Θ . Convex w.r.t. q .

The diagram suggests the optimization in the space of probability measures.

[Nitanda & Suzuki (2017)]

Approach: Optimize a distribution via optimization of m-particles $(\theta_r)_{r=1}^m$ (random variables). Optimization of the distribution is getting accurate as $m \to \infty$.

[Nitanda & Suzuki (2017)]

Approach: Optimize a distribution via optimization of m-particles $(\theta_r)_{r=1}^m$ (random variables). Optimization of the distribution is getting accurate as $m \to \infty$.

Mean field model: $h_{\Theta}(x) = \frac{1}{m} \sum_{r=1}^{m} h(\theta_r, x)$, initialization: $\theta_r^{(0)} \sim \mu_0$.

[Nitanda & Suzuki (2017)]

Approach: Optimize a distribution via optimization of m-particles $(\theta_r)_{r=1}^m$ (random variables). Optimization of the distribution is getting accurate as $m\to\infty$.

Mean field model: $h_{\Theta}(x) = \frac{1}{m} \sum_{r=1}^{m} h(\theta_r, x)$, initialization: $\theta_r^{(0)} \sim \mu_0$.

[Nitanda & Suzuki (2017)]

Approach: Optimize a distribution via optimization of m-particles $(\theta_r)_{r=1}^m$ (random variables). Optimization of the distribution is getting accurate as $m \to \infty$.

Mean field model: $h_{\Theta}(x) = \frac{1}{m} \sum_{r=1}^{m} h(\theta_r, x)$, initialization: $\theta_r^{(0)} \sim \mu_0$.

[Nitanda & Suzuki (2017)]

Approach: Optimize a distribution via optimization of m-particles $(\theta_r)_{r=1}^m$ (random variables). Optimization of the distribution is getting accurate as $m \to \infty$.

Mean field model: $h_{\Theta}(x) = \frac{1}{m} \sum_{r=1}^{m} h(\theta_r, x)$, initialization: $\theta_r^{(0)} \sim \mu_0$.

The update of parameter $\Theta^{(0)} \mapsto \Theta^{(1)}$ implicitly updates its distribution: $\mu^{(0)} \mapsto \mu^{(1)}$

ightarrow GD on mean field model implicitly optimizes the parameter distribution: $\min_{\mu} \mathcal{L}(\mu)$.

Regularized Empirical Risk Minimization

KL-regularized empirical risk minimization over the probability space:

$$\min_{q \in \mathcal{P}_2} \left\{ \frac{1}{n} \sum_{i=1}^n l(\mathbb{E}_q[h(\cdot, x_i)], y_i) + \underline{\lambda_1 \mathbb{E}_q[\|\theta\|_2^2] + \lambda_2 \mathbb{E}_q[\log(q(\theta))]} \right\}.$$

Kullback-Leibler divergence to zero-mean Gaussian

 \mathcal{P}_2 : the set of smooth positive densities with well-defined second moment and entropy. \mathbb{E}_q denotes the expectation w.r.t $\theta \sim q(\theta) \mathrm{d}\theta$.

Regularized Empirical Risk Minimization

KL-regularized empirical risk minimization over the probability space:

$$\min_{q \in \mathcal{P}_2} \left\{ \frac{1}{n} \sum_{i=1}^n l(\mathbb{E}_q[h(\cdot, x_i)], y_i) + \underline{\lambda_1 \mathbb{E}_q[\|\theta\|_2^2] + \lambda_2 \mathbb{E}_q[\log(q(\theta))]} \right\}.$$

Kullback-Leibler divergence to zero-mean Gaussian

 \mathcal{P}_2 : the set of smooth positive densities with well-defined second moment and entropy. \mathbb{E}_q denotes the expectation w.r.t $\theta \sim q(\theta) \mathrm{d}\theta$.

- → Develop new methods with the convergence rate analysis by exploiting the convexity of the loss function w.r.t. the probability density.
- → Quantitative convergence guarantees in discrete-time setting.

PDA Method

• Gradient Descent

$$\theta_r^{(k+1)} = (1 - 2\eta \lambda_1)\theta_r^{(k)} - \frac{\eta}{n} \sum_{i=1}^n \partial_z l(g_{\Theta^{(k)}}(x_i), y_i) \partial_\theta h(\theta_r^{(k)}, x_i).$$

PDA Method

• Gradient Descent

$$\theta_r^{(k+1)} = (1 - 2\eta \lambda_1)\theta_r^{(k)} - \frac{\eta}{n} \sum_{i=1}^n \partial_z l(g_{\Theta^{(k)}}(x_i), y_i) \partial_\theta h(\theta_r^{(k)}, x_i).$$

Major differences from GD.

Particle Dual Averaging (a variant of noisy gradient descent)

$$\theta_r^{(k+1)} = \left(1 - \frac{2\eta\lambda_1t}{\lambda_2(t+2)}\right)\theta_r^{(k)} - \frac{\eta}{n\lambda_2(t+2)(t+1)}\sum_{i=1}^n \underline{w_i}\partial_\theta h(\theta_r^{(k)},x_i) + \underline{\sqrt{2\eta}\zeta_r^{(k)}}.$$

$$(\zeta_r^{(k)} \sim \mathcal{N}(0,I))$$

PDA Method

Gradient Descent

$$\theta_r^{(k+1)} = (1 - 2\eta \lambda_1)\theta_r^{(k)} - \frac{\eta}{n} \sum_{i=1}^n \partial_z l(g_{\Theta^{(k)}}(x_i), y_i) \partial_\theta h(\theta_r^{(k)}, x_i).$$

Major differences from GD.

Particle Dual Averaging (a variant of noisy gradient descent)

$$\theta_r^{(k+1)} = \left(1 - \frac{2\eta \lambda_1 t}{\lambda_2 (t+2)}\right) \theta_r^{(k)} - \frac{\eta}{n\lambda_2 (t+2)(t+1)} \sum_{i=1}^n w_i \partial_\theta h(\theta_r^{(k)}, x_i) + \sqrt{2\eta} \zeta_r^{(k)}.$$

$$(\zeta_r^{(k)} \sim \mathcal{N}(0, I))$$

Double loops algorithm

(Inner-loop) Run Langevin Monte Carlo to approximate Gibbs distribution $q_*^{(t+1)}$ defined by $\{w_i\}_{i=1}^n$.

(Outer-loop) Update $\{w_i\}_{i=1}^n$ based on dual averaging method so that Gibbs distributions $\{q_*^{(t)}\}_t$ converges to the solution.

(Remark: PDA can be also applied to expected risk minimization.)

Idea behind Mean field Limit of PDA

• The problem we want to solve is an entropic regularized nonlinear functional:

$$\min_{q} \left\{ \frac{1}{n} \sum_{i=1}^{n} \frac{l(\mathbb{E}_q[h(\cdot, x_i)], y_i) + \lambda_1 \mathbb{E}_q[\|\theta\|_2^2] + \lambda_2 \mathbb{E}_q[\log(q(\theta))]}{\text{Innear w.r.t.} q} \right\}.$$

Idea behind Mean field Limit of PDA

• The problem we want to solve is an entropic regularized nonlinear functional:

$$\min_{q} \left\{ \frac{1}{n} \sum_{i=1}^{n} \frac{l(\mathbb{E}_q[h(\cdot, x_i)], y_i) + \lambda_1 \mathbb{E}_q[\|\theta\|_2^2] + \lambda_2 \mathbb{E}_q[\log(q(\theta))]}{\text{Innear w.r.t.} q} \right\}.$$

• Linearize this based on DA method and obtain an entropic regularized linear functional:

$$\min_{q} \{ \mathbb{E}_{q}[f] + \mathbb{E}_{q}[\log(q)] \}.$$
linear w.r.t.q.

Idea behind Mean field Limit of PDA

• The problem we want to solve is an entropic regularized nonlinear functional:

$$\min_{q} \left\{ \frac{1}{n} \sum_{i=1}^{n} \frac{l(\mathbb{E}_q[h(\cdot, x_i)], y_i) + \lambda_1 \mathbb{E}_q[\|\theta\|_2^2] + \lambda_2 \mathbb{E}_q[\log(q(\theta))]}{\text{Innear w.r.t.} q} \right\}.$$

• Linearize this based on DA method and obtain an entropic regularized linear functional:

$$\min_{q} \{ \mathbb{E}_{q}[f] + \mathbb{E}_{q}[\log(q)] \}.$$
linear w.r.t.q.

The minimizer is the Gibbs distribution $\propto \exp(-f)$.

LMC converges to this distribution up to $O(\eta)$ -error.

$$\theta^{(k+1)} \leftarrow \theta^{(k)} - \eta \nabla_{\theta} f(\theta^{(k)}) + \sqrt{2\eta} \zeta^{(k)}.$$

Theorem. Under appropriate assumptions:

(Outer loop complexity)

$$\min_{t\in\{1,...,T\}}\mathcal{L}(q^{(t)})-\mathcal{L}(q^*)= ilde{O}(1/T).$$
 (We ignore λ_1,λ_2 for simplicity)

Theorem. Under appropriate assumptions:

(Outer loop complexity)

$$\min_{t \in \{1,...,T\}} \mathcal{L}(q^{(t)}) - \mathcal{L}(q^*) = \tilde{O}(1/T).$$
 (We ignore λ_1, λ_2 for simplicity)

(Inner loop complexity) $k_t = \tilde{O}\left(t^2\exp(16/\lambda_2)/\lambda_1^2\right)$ iteration is sufficient at t-th outer loop to guarantee the above convergence.

Theorem. Under appropriate assumptions:

(Outer loop complexity)

$$\min_{t \in \{1, \dots, T\}} \mathcal{L}(q^{(t)}) - \mathcal{L}(q^*) = \tilde{O}(1/T).$$
 (We ignore λ_1, λ_2 for simplicity)

(Inner loop complexity) $k_t = \tilde{O}\left(t^2 \exp(16/\lambda_2)/\lambda_1^2\right)$ iteration is sufficient at t-th outer loop to guarantee the above convergence.

(**Total**) To obtain ϵ -accurate solution,

Iteration complexity: $\tilde{O}(\epsilon^{-3})$, Particle complexity: $\tilde{O}(\epsilon^{-2})$.

Remark

- We use restarting scheme to guarantee the particle complexity.
- Inner and total complexities can be reduced by using more efficient sampling than Langevin MC.

Theorem. Under appropriate assumptions:

(Outer loop complexity)

$$\min_{t \in \{1,...,T\}} \mathcal{L}(q^{(t)}) - \mathcal{L}(q^*) = \tilde{O}(1/T).$$
 (We ignore λ_1,λ_2 for simplicity)

(Inner loop complexity) $k_t = ilde{O}\left(t^2 \exp(16/\lambda_2)/\lambda_1^2\right)$ iteration is sufficient at

t-th outer loop to guarantee the above convergence.

(**Total**) To obtain ϵ -accurate solution,

Iteration complexity: $\tilde{O}(\epsilon^{-3})$, Particle complexity: $\tilde{O}(\epsilon^{-2})$.

Remark

- We use restarting scheme to guarantee the particle complexity.
- Inner and total complexities can be reduced by using more efficient sampling than Langevin MC.

(a) objective value (regression).

Summary

• We study the optimization of mean field neural networks for KL-regularized problems over the space of distributions.

$$\min_{q \in \mathcal{P}_2} \left\{ \frac{1}{n} \sum_{i=1}^n l(\mathbb{E}_q[h(\cdot, x_i)], y_i) + \lambda_1 \mathbb{E}_q[\|\theta\|_2^2] + \lambda_2 \mathbb{E}_q[\log(q(\theta))] \right\}.$$

• Utilizing the convexity, we give the quantitative convergence guarantees:

Iteration complexity: $\tilde{O}(\epsilon^{-3})$, Particle complexity: $\tilde{O}(\epsilon^{-2})$.

Future work:

More efficient optimization methods inspired by finite-dimensional optimization.