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Outline
Topic: Convergence analysis of mean field neural networks.

Mean field neural networks exhibit global convergence and adaptivity.
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Outline
Topic: Convergence analysis of mean field neural networks.

Mean field neural networks exhibit global convergence and adaptivity. 

However, this model is difficult to optimize in general.
A structural assumption or regularization is needed for efficient optimization.

Contribution: We develop Particle Dual Averaging for KL-regularized problem.
We give quantitative convergence guarantees in discrete-time setting.

To obtain an   -accurate solution,
Iteration complexity:            ,  Particle complexity (# of neurons):           . 
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Optimization for Two-layer NNs
• Risk minimization            : loss function,

squared loss:                                       logistic loss: 
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Optimization for Two-layer NNs
• Risk minimization            : loss function,

squared loss:                                       logistic loss: 

• Two-layer neural networks 

→ Nonconvex optimization problems
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Gradient-based method converges to 
a stationary point：

are fixed in the theory.



Common Approach
Key: characterize the function space where optimization performs.

Convexity w.r.t the function

E.g.) squared loss:                                 ,  logistic loss:                                             . 
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Common Approach
Key: characterize the function space where optimization performs.

Convexity w.r.t the function

E.g.) squared loss:                                 ,  logistic loss:                                             . 

• Mean field  [Nitanda & Suzuki (2017)], [Chizat & Bach (2018)], [Mei, Montanari, & Nguyen (2018)]

Coefficient:               learning rate: 

Function space: probability measures.

• Neural tangent kernel (NTK) [Jacot, Gabriel, & Hongler (2018)]

Coefficient:                  learning rate: 

Function space: reproducing kernel Hilbert space (RKHS) associated with NTK.
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Adaptive Learning Aspect
The target function is a single neuron model with parameter      .                                . 

The figure plots the cos similarity between       and top-5 singular vectors of the parameter. 

Mean field neural network shows the adaptivity to the low dimensional structure．
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Related Work
• Convergence analysis 

• [Nitanda & Suzuki (2017)] Relationship between the gradient descent and Wasserstein gradient flow.
• [Chizat & Bach (2018)], [Mei, Montanari, & Nguyen (2018)]

Global convergence analysis for 2-NN with ReLU and bounded smooth activations.
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Global convergence analysis for 2-NN with ReLU and bounded smooth activations.

• Convergence rate analysis in the continuous-time setting
• [Rotskoff, Jelassi, Bruna, & Vanden-Eijnden (2019)]  

Sublinear convergence rate for the neuron birth-death dynamics.
• [Javanmard, Mondelli, & Montanari (2019)]

Linear convergence rate for the strong concave target function．
• [Hu, Ren, Siska, & Szpruch (2019)]  KL-divergence regularization．

Under strong regularization, Linear convergence of mean field Langevin.
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Related Work
• Convergence analysis 

• [Nitanda & Suzuki (2017)] Relationship between the gradient descent and Wasserstein gradient flow.
• [Chizat & Bach (2018)], [Mei, Montanari, & Nguyen (2018)]

Global convergence analysis for 2-NN with ReLU and bounded smooth activations.

• Convergence rate analysis in the continuous-time setting
• [Rotskoff, Jelassi, Bruna, & Vanden-Eijnden (2019)]  

Sublinear convergence rate for the neuron birth-death dynamics.
• [Javanmard, Mondelli, & Montanari (2019)]

Linear convergence rate for the strong concave target function．
• [Hu, Ren, Siska, & Szpruch (2019)]  KL-divergence regularization．

Under strong regularization, Linear convergence of mean field Langevin.

• Convergence rate analysis in the discrete-time setting
• [Chizat (2019)], [Akiyama & Suzuki (2021)] Local linear convergence under structural assumption.

Convergence rate analysis is nontrivial and requires an additional assumption or regularization.

Remark: In parallel to our work, [Bou-Rabee and Eberle (2021)] shows a similar result on specific loss functions.
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Mean field Models
Element of mean field model:              

Parameter:                                              
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Mean field Models
Element of mean field model:              

Parameter:                                              

The diagram suggests the optimization in the space of probability measures.
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Loss Loss

Nonconvex w.r.t.    . Convex w.r.t.   .

Linear w.r.t.   .

E.g.) 



Particle Based Approach
Approach: Optimize a distribution via optimization of    -particles            (random variables).
Optimization of the distribution is getting accurate as              .

[Nitanda & Suzuki (2017)]
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Particle Based Approach
Approach: Optimize a distribution via optimization of    -particles            (random variables).
Optimization of the distribution is getting accurate as              .

Mean field model:                                               initialization:

The update of parameter                      implicitly updates its distribution: 
→ GD on mean field model implicitly optimizes the parameter distribution:

[Nitanda & Suzuki (2017)]

𝜇# 𝜇$
Gradient Descent
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Regularized Empirical Risk Minimization
KL-regularized empirical risk minimization over the probability space:

: the set of smooth positive densities with well-defined second moment and entropy．
denotes the expectation w.r.t
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Regularized Empirical Risk Minimization
KL-regularized empirical risk minimization over the probability space:

: the set of smooth positive densities with well-defined second moment and entropy．
denotes the expectation w.r.t

→ Develop new methods with the convergence rate analysis by exploiting 
the convexity of the loss function w.r.t. the probability density.
→ Quantitative convergence guarantees in discrete-time setting.
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Kullback-Leibler divergence to zero-mean Gaussian



PDA Method
• Gradient Descent
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PDA Method
• Gradient Descent

• Particle Dual Averaging (a variant of noisy gradient descent)
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PDA Method
• Gradient Descent

• Particle Dual Averaging (a variant of noisy gradient descent)

Double loops algorithm

(Inner-loop)  Run Langevin Monte Carlo to approximate Gibbs 
distribution          defined by .

(Outer-loop) Update             based on dual averaging method 
so that Gibbs distributions            converges to the solution.
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Outer-loop:
DA updates Gibbs distributions.

Inner-loop:
The update can be approximated by 
Langevin algorithm using finite-particles.

(Remark: PDA can be also applied to expected risk minimization.)

Major differences from GD.



Idea behind Mean field Limit of PDA 
• The problem we want to solve is an entropic regularized nonlinear functional:
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Idea behind Mean field Limit of PDA 
• The problem we want to solve is an entropic regularized nonlinear functional:

• Linearize this based on DA method and obtain an entropic regularized linear functional:

The minimizer is the Gibbs distribution                  .

LMC converges to this distribution up to        -error.
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nonlinear w.r.t．.

linear w.r.t．.

linear w.r.t．.



Convergence Analysis
Theorem. Under appropriate assumptions:
(Outer loop complexity)
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• We use restarting scheme to guarantee the particle complexity.
• Inner and total complexities can be reduced by using more efficient 

sampling than Langevin MC.
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( We ignore           for simplicity) 

Remark
• We use restarting scheme to guarantee the particle complexity.
• Inner and total complexities can be reduced by using more efficient 

sampling than Langevin MC.



Summary
• We study the optimization of mean field neural networks for 

KL-regularized problems over the space of distributions.

• Utilizing the convexity, we give the quantitative convergence guarantees:

Iteration complexity:              ,  Particle complexity:             .

Future work:  

More efficient optimization methods inspired by finite-dimensional optimization.
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