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A brief summary

I NNs with ReLU activation are asymptotically overconfident

I Bayesian treatment mitigates this to some degree
I But previous result:

I only shows this for binary classification and
I doesn’t achieve the ideal maximum uncertainty even in the limit

I We:
I propose an extension to multi-class ReLU BNNs,
I which is guaranteed to be maximally uncertain far from the data

I Moreover, the method is beneficial for the non-asymptotic uncertainty, without
affecting the prediction
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Problem with ReLU nets
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I Point-estimation of a ReLU net fθ is almost always overconfident1

I Because
I Far from the data, fθMAP is linear
I So, given an input x and a scalar α > 0, there is a class c s.t.

limα→∞ softmax
(
fθMAP (αx ))

)
c = 1

1Hein et al., CVPR 2019
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I Point-estimation of a ReLU net fθ is almost always overconfident1

I Because
I Far from the data, fθMAP is linear2

I So, given an input x and a scalar α > 0, there is a class c s.t.
limα→∞ softmax

(
fθMAP (αx ))

)
c = 1

1Hein et al., CVPR 2019
2And non-constant

2



Bayesian ReLU nets

I Approximate instead the posterior p (θ | D) ≈ N (µ,Σ ) =: q (θ)

I Kristiadi et al. (ICML 2020) shows that

lim
α→∞ p (y = 1 | αx ,D) ≈ lim

α→∞

∫
σ (fθ (αx )) q (θ) dθ < 1,

and the exact value depends on the eigenvalues of Σ
I But:

I This result is limited to binary classification
I This bound can be loose—ideally we have the uniform confidence 1/C .
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I Kristiadi et al. (ICML 2020) shows that1

lim
α→∞ p (y = 1 | αx ,D) ≈ lim

α→∞

∫
σ (fθ (αx )) q (θ) dθ < 1,

and the exact value depends on the eigenvalues of Σ
I But:

I This result is limited to binary classification
I This bound can be loose—ideally we have the uniform confidence 1/C .2

1σ is the logistic-sigmoid function
2Where C is the number of classes.
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Achieving the uniform confidence

I Previous result uses1

p (y = 1 | αx ,D) ≈ σ
(

αÅq (fθ (x ))√
1 + π/8Varq (fθ (αx ))

)

I No uniform confidence because:
I The numerator is linear in α
I The denominator is also linear in α

I So, to achieve the uniform confidence:
I The numerator must stay the same
I The variance must be in Θ(αd ) for d > 2

1Via linearization and the probit approximation
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Super-quadratic variance does exist
Just not for BNNs

I In GPs, the cubic spline kernel1 has cubic variance
I “Placing” K ReLU features on the input space and take K →∞
I But it is defined only on Ò>=0

I We extend this kernel (Double-Sided Cubic Spline (DSCS) kernel)
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I Important properties: k (x , x ) ≈ 0 for x ≈ 0 and k (αx , αx ) ∈ Θ(α3)

1Wahba, 1990
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Extending ReLU BNNs
With the DSCS kernel

I The ReLU BNN fθ (x ) doesn’t achieve the uniform confidence
=⇒ there is a residual predictive uncertainty

I Model this residual with the DSCS kernel k , call it ReLU-GP Residual (RGPR):

f̃ (x ) := fθ (x ) + f̂ (x ) where f̂ ∼ GP(0, k )

I Under posterior q (θ) = N(µ,Σ ), we show that the GP posterior of f̃ (x ) is

p (f̃ (x ) | D) ≈ N (
Åq (fθ (x )),Varq (fθ (x )) + k (x , x )

)
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f̃ (x ) := fθ (x ) + f̂ (x ) where f̂ ∼ GP(0, k )

I Under posterior q (θ) = N(µ,Σ ), we show that the GP posterior of f̃ (x ) is1

p (f̃ (x ) | D) ≈ N (
Åq (fθ (x )),Varq (fθ (x )) + k (x , x )

)
Thus, RGPR can be applied post-hoc cheaply, given a pre-trained ReLU BNN

1Under linearization and k (x , x ) ≈ 0 for x ≈ 0
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RGPR fixes asymptotic overconfidence
In multi-class classification

I Recall p (f̃ (x ) | D) ≈ N (
Åq (fθ (x )),Varq (fθ (x )) + k (x , x )

)
I Since Å(f̃ (x )) = Åq (fθ (x )) we retain the BNN’s prediction
I But Var(f̃ (x )) = Varq (fθ (x )) + k (x , x ) ∈ Θ(α3)!

I It induces the predictive distribution:

p (y = c | x , f̃ ,D) =
∫

softmax(f̃ (x ))c p (f̃ (x ) | D) d f̃ (x )

I Under some approximations, we can thus show:

lim
α→∞ p (y = c | αx , f̃ ,D) =

1

C
for each class c = 1, . . . ,C
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I But Var(f̃ (x )) = Varq (fθ (x )) + k (x , x ) ∈ Θ(α3)!

I It induces the predictive distribution:

p (y = c | x , f̃ ,D) =
∫

softmax(f̃ (x ))c p (f̃ (x ) | D) d f̃ (x )

I Under some approximations,1 we can thus show:

lim
α→∞ p (y = c | αx , f̃ ,D) =

1

C
for each class c = 1, . . . ,C

1Linearization and the generalized probit approximation (Gibbs, 1997)
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Extending RGPR to non-asymptotic regimes

I Apply RGPR to not only the input, but also hidden layer {h l (x )}L−1l=1 of the
(point-estimated) NN1

p (f̂ (x )) = N
(
0,

∑L−1
l=0 σ

2
l k (h l (x ), h l (x ))

)

(a) Input only (b) Input & hiddens

I One can also optimize the hyperparameters {σ2l }L−1l=0

1We assume that the GP for each hidden space is independent
8
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OOD detection

Table: OOD data detection in terms of FPR@95—lower is better. All values are in percent
and averages over five OOD test sets and over 5 prediction runs. Prediction is done via
Monte Carlo integration.

Methods MNIST CIFAR10 SVHN CIFAR100
MAP 28.2 38.9 17.8 72.2
Temp. Scaling 28.4 34.9 17.6 71.9
Deep Ens. 23.0 51.0 11.3 74.7
Vanilla GP + DSCS 27.8 46.7 19.1 69.1
Last-layer Laplace 24.8 29.8 15.7 69.5
Last-layer Laplace + RGPR 3.6 24.2 9.6 63.0
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Conclusion

I We extend the “ReLU kernel” of Wahba (1990) to the whole Ò

I Using this kernel, we model the “uncertainty residual” of ReLU BNNs
I The resulting method, RGPR, can be applied post-hoc to ReLU BNNs
I Theoretically: RGPR fixes the asymptotic overconfidence problem
I Practically: RGPR can be extended to non-asymptotic regimes and gives good

uncertainty quantification performance
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