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Introduction - Certifiable Training
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Adversarial Examples

Adversarial Example

An input perturbed with a small adversarially designed perturbation that
can change the network’s prediction [Sze+13].
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Heuristic Defenses : Adaptive Attacks

To build a model that is robust to adversarial attacks,
many heuristic defenses are proposed, but broken by adaptive attacks.

d : a (d is broken by a)

Defensive distillation [Pap+16] : z/T [CW16], CW attack [CW17]

ICLR 18 (preprocessing-based) : BPDA attack [ACW18]

ICLR 18 (randomization-based) : EOT attack [Ath+18; ACW18]

Many more : Adaptive attacks [Tra+20; CH20; Cro+20]

· · ·
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Heuristic Defenses : Adaptive Attacks

To build a model that is robust to adversarial attacks,
many heuristic defenses are proposed, but broken by adaptive attacks.

d : a (d is broken by a)

Defensive distillation [Pap+16] : z/T [CW16], CW attack [CW17]

ICLR 18 (preprocessing-based) : BPDA attack [ACW18]

ICLR 18 (randomization-based) : EOT attack [Ath+18; ACW18]

Many more : Adaptive attacks [Tra+20; CH20; Cro+20]

· · ·

To end this arms race of adversarial attack-defense,
certifiable training (certified defense) is proposed [HA17; RSL18;

WK18; Won+18; Dvi+18; MGV18; Gow+18; Zha+19; BV19; LLP20].
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ERM : ARM

Empirical Risk Minimization

min
θ∈Θ

E(x ,y)∼D[`(fθ(x), y)] (ERM)

Adversarial Risk Minimization

min
θ∈Θ

E(x ,y)∼D[ max
x ′∈B(x ,ε)

`(fθ(x ′), y)] (ARM)

Worst-case loss: max
x ′∈B(x ,ε)

`(fθ(x ′), y)
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Certifiable Training

Adversarial Risk Minimization

min
θ∈Θ

E(x ,y)∼D[ max
x ′∈B(x ,ε)

`(fθ(x ′), y)] (ARM)

Upper Bound Approximation

max
x ′∈B(x ,ε)

`(fθ(x ′), y) ≤ `UB(x , y ; θ) (UB)

Certifiable training minimizes the upper bound to build a ”certifiably”
robust model.

Certified Training

min
θ∈Θ

E(x ,y)∼D[`UB(x , y ; θ)] (CT)
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Tightness

* = max
(x, )

UB

tightness
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Interesting Observation

However, IBP [Gow+18] outperforms linear relaxation-based methods,
especially when the perturbation is large, despite using much looser
bounds.

IBP CROWN-IBP (β = 1) CAP OURS
train loss

at the beginning
1.64 > 1.20 0.85 1.20

test error
at the best checkpoint

73.19 < 75.82 73.91 70.92

1
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Q. What is a key factor in certifiable training?
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Questions

However, IBP outperforms linear relaxation-based methods, especially
when the perturbation is large, despite using much looser bounds.

IBP CROWN-IBP (β = 1) CAP OURS
train loss

at the beginning
1.64 > 1.20 0.85 1.20

test error
at the best checkpoint

73.19 < 75.82 73.91 70.92

1

Q1. Why does tighter bounds not result in a better performance?

Q2. What other factors may influence the performance?
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A. Smoothness
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Certifiable Training from Optimization Perspectives

Total training loss: L = ED[`]

Certifiable Training

min
θ∈Θ
L∗(θ) ≤ min

θ∈Θ
LUB(θ) (CD)

Formulation
: tightness of the upper bound LUB(θ)

Optimization
: smoothness of the landscape of the objective function LUB(θ)
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Smoothness of the loss landscape

Theorem (convergence rate of standard training)

Under some conditions,

L(θt+1) ≤L(θt)
(
1− αγt−1

)
(1)

for some α > 0 where γt = ‖gt+1−gt‖
‖gt‖ with gt = ∇θL(θt).

Lower γt is favorable for the optimization.
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Smoothness of the loss landscape

Theorem (convergence rate of certifiable training)

With gradient descent using a step size within an interval It during the
ramp-up period (0 ≤ εt ≤ ε), the loss Lε for the target perturbation ε is
reduced with

Lε(θt+1) ≤Lε(θt)
(
1− µ

2
cos2(φt)‖Hε

tut‖−1
)

(2)

for ut = ∇θLεt (θt)
‖∇θLεt (θt)‖ where 0 < µ ≤ ‖∇θLε‖2

2Lε , cos(φt) = ∇θLεT∇θLεt
‖∇θLε‖‖∇θLεt ‖ and

Hε
t satisfies Lε(θt+1) = Lε(θt) +∇θLε(θt)T∆t + 1

2 ∆T
t Hε

t ∆t and
∆T

t Hε
t ∆t > 0 with ∆t = θt+1 − θt .

Lower ‖Hε
tut‖ is favorable for the optimization.

cf. ‖Hε
tut‖ = ‖Hε

t g
εt
t ‖/‖g εtt ‖ = ‖Hε

t ∆t‖/‖∆t‖ ≈ ‖g εt+1 − g εt ‖/‖∆t‖
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Non-smoothness measures

We used the following non-smoothness measures:

Loss variation:
|Lεt (θ(λ))−Lεt (θ(0))| for λ ∈ [0, 5] where θ(λ) ≡ θt −λη∇θLεt (θt)
Grad Difference: ‖∇θLεt (θt)−∇θLεt (θt+1)‖
Cosine Distance: 1− cos(∇θLεt (θt),∇θLεt (θt+1))

Higher non-smoothness measures indicate less smooth loss landscape
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Experimental Results
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Non-smoothness measures

Higher (non-smoothness) measures indicate less smooth loss landscape.
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Tightness (small ε)

small large 
8

6

4

2

0

2
(C

er
tif

ie
d 

Ac
c)

OURS CAP (Shallow) CBP11 (Shallow) CBP11

cf. CBP11 = CROWN-IBP (β = 1)
∆(Certified Acc) indicates the difference of the certified accuracy with the
proposed method when the same architecture is used.
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Smoothness (large ε)
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cf. CBP10 = CROWN-IBP (β = 1→ β = 0)
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Tightness (small ε) & Smoothness (large ε)
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Performance

Table: Test errors (Standard / PGD / Verified error).
Bold and underline numbers are the 1st and 2nd lowest verified error.

Data εtest(l∞) IBP CROWN-IBP (β = 1) CAP OURS

MNIST

0.1 1.18 / 2.16 / 3.52 1.07 / 1.69 / 2.10 0.80 / 1.73 / 3.19 1.09 / 1.77 / 2.36

0.2 2.00 / 3.29 / 6.31 2.99 / 5.50 / 7.97 3.22 / 6.72 / 11.06 1.70 / 3.44 / 4.34

0.3 3.50 / 5.85 / 10.45 5.73 / 10.76 / 16.28 19.19 / 35.84 / 47.85 3.49 / 5.59 / 9.79

0.4 3.50 / 7.30 / 17.96 5.73 / 14.63 / 23.80 - 3.49 / 6.77 / 15.42

CIFAR-10

(Shallow)

2/255 37.98 / 49.40 / 55.39 32.48 / 42.77 / 50.15 28.80 / 38.95 / 48.50 31.49 / 42.73 / 49.42
4/255 46.42 / 57.42 / 62.80 45.56 / 58.24 / 64.47 40.78 / 52.62 / 61.88 42.53 / 55.55 / 61.52
6/255 52.84 / 63.92 / 68.79 54.72 / 65.28 / 71.04 49.20 / 60.85 / 69.03 50.19 / 61.88 / 66.90
8/255 55.71 / 66.79 / 70.95 61.37 / 70.66 / 75.37 56.77 / 66.78 / 73.02 56.01 / 66.17 / 69.70

16/255 67.10 / 75.12 / 78.26 76.65 / 81.90 / 84.42 75.11 / 80.67 / 82.07 65.93 / 75.39 / 77.87

CIFAR-10

(Deep)

2/255 39.17 / 48.80 / 55.48 29.02 / 40.17 / 46.22 - 31.48 / 42.52 / 47.89
8/255 59.53 / 65.98 / 70.86 59.43 / 65.79 / 73.34 - 50.78 / 62.58 / 68.44

SVHN 0.01 19.91 / 34.12 / 43.83 17.25 / 30.84 / 39.88 16.88 / 30.16 / 37.09 16.41 / 30.43 / 39.44

cf. There are more comparison results (RS [Xia+18], DiffAI [MGV18],
COLT [BV19], and CBP10 [Zha+19]) in the paper.
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Summary

Certifiable Training

Tightness Smoothness

formulation optimization
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Thank You
https://github.com/sungyoon-lee/LossLandscapeMatters
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