
Generalized Depthwise-Separable Convolutions for 
Adversarially Robust and Efficient Neural Networks

Hassan Dbouk & Naresh Shanbhag

Department of Electrical and Computer Engineering

University of Illinois at Urbana-Champaign 



Motivation: Robust and Efficient Inference

decision: ‘panda’ decision: ‘gibbon’

original sample adversarial sample

deep nets are vulnerable



Motivation: Robust and Efficient Inference

decision: ‘panda’ decision: ‘gibbon’

original sample adversarial sample

deep nets are vulnerable

CIFAR-10

deep nets are expensive



Motivation: Robust and Efficient Inference

design robust and accurate deep nets that achieve high FPS when mapped 
onto edge hardware 

decision: ‘panda’ decision: ‘gibbon’

original sample adversarial sample

deep nets are vulnerable

CIFAR-10

deep nets are expensive



Motivation: Robust and Efficient Inference

design robust and accurate deep nets that achieve high FPS when mapped 
onto edge hardware 

decision: ‘panda’ decision: ‘gibbon’

original sample adversarial sample

deep nets are vulnerable

CIFAR-10

deep nets are expensive

NVIDIA Jetson Xavier



Limitations of Existing Techniques

• reductions often don’t translate to hardware

• make AT more expensive

• ad hoc in nature, no theoretical basis behind them

FPS measured on NVIDIA Jetson
time measured on NVIDIA 1080 Ti

VGG-16 on CIFAR-10



Limitations of Existing Techniques

• reductions often don’t translate to hardware

• make AT more expensive

• ad hoc in nature, no theoretical basis behind them

FPS measured on NVIDIA Jetson
time measured on NVIDIA 1080 Ti

VGG-16 on CIFAR-10



Limitations of Existing Techniques

• reductions often don’t translate to hardware

• make AT more expensive

• ad hoc in nature, no theoretical basis behind them

FPS measured on NVIDIA Jetson
time measured on NVIDIA 1080 Ti

VGG-16 on CIFAR-10



Propose: Generalized Depth-wise Separable Convolutions

• dramatically improve FPS while preserving robust accuracy

• operate on pre-trained models → no additional training

• optimal and efficient approximation algorithms developed

VGG-16 on CIFAR-10



Propose: Generalized Depth-wise Separable Convolutions

• dramatically improve FPS while preserving robust accuracy

• operate on pre-trained models → no additional training

• optimal and efficient approximation algorithms developed

VGG-16 on CIFAR-10



Propose: Generalized Depth-wise Separable Convolutions

• dramatically improve FPS while preserving robust accuracy

• operate on pre-trained models → no additional training

• optimal and efficient approximation algorithms developed

VGG-16 on CIFAR-10



Depth-wise Separable Convolutions

• popularized by MobileNets [arXiv’17, CVPR’18]

• number of FLOPs required per forward pass:
𝐻′𝑊′𝐶(𝐾2 +𝑀)



Depth-wise Separable Convolutions

• popularized by MobileNets [arXiv’17, CVPR’18]

• number of FLOPs required per forward pass:
𝐻′𝑊′𝐶(𝐾2 +𝑀)



Depth-wise Separable Convolutions

• popularized by MobileNets [arXiv’17, CVPR’18]

• number of FLOPs required per forward pass:
𝐻′𝑊′𝐶(𝐾2 +𝑀)



Depth-wise Separable Convolutions

• popularized by MobileNets [arXiv’17, CVPR’18]

• number of FLOPs required per forward pass:
𝐻′𝑊′𝐶(𝐾2 +𝑀)



Generalized Depth-wise Separable Convolutions

• number of FLOPs required per forward pass:

𝐻′𝑊′ ෍

𝑐=1

𝐶

𝑔𝑐 𝐾
2 +𝑀 = 𝐻′𝑊′𝐺 𝐾2 +𝑀 = 𝛾(𝐠)

• how to choose the 𝑔𝑐’s? → optimal approximation algorithm 



Generalized Depth-wise Separable Convolutions

• number of FLOPs required per forward pass:

𝐻′𝑊′ ෍

𝑐=1

𝐶

𝑔𝑐 𝐾
2 +𝑀 = 𝐻′𝑊′𝐺 𝐾2 +𝑀 = 𝛾(𝐠)

• how to choose the 𝑔𝑐’s? → optimal approximation algorithm 



Generalized Depth-wise Separable Convolutions

• number of FLOPs required per forward pass:

𝐻′𝑊′ ෍

𝑐=1

𝐶

𝑔𝑐 𝐾
2 +𝑀 = 𝐻′𝑊′𝐺 𝐾2 +𝑀 = 𝛾(𝐠)

• how to choose the 𝑔𝑐’s? → optimal approximation algorithm 



Generalized Depth-wise Separable Convolutions

• number of FLOPs required per forward pass:

𝐻′𝑊′ ෍

𝑐=1

𝐶

𝑔𝑐 𝐾
2 +𝑀 = 𝐻′𝑊′𝐺 𝐾2 +𝑀 = 𝛾(𝐠)

• how to choose the 𝑔𝑐’s? → optimal approximation algorithm 



Standard 2D Convolution as a Matrix Multiplication

𝐾

𝐾

𝑊

𝐻

× 𝐶

𝐾

𝐾

× 𝐶

×𝑀

𝐹

1

1

𝐸

×𝑀

input feature map 𝒳 output feature map 𝒴𝑀 convolutional filters

∗ =



𝐾2

× 𝐶

slice 𝐱 ∈ ℝ𝐶𝐾2

×𝑀

output channel 
𝐲 ∈ ℝ𝑀

extract convolve slice reshape

Standard 2D Convolution as a Matrix Multiplication

𝐾

𝐾

𝑊

𝐻

× 𝐶

input feature map 𝒳

𝐹

1

1

𝐸

×𝑀

output feature map 𝒴

• vectorizing inputs and outputs



Standard 2D Convolution as a Matrix Multiplication

• matrix vector multiplication for one output channel vector

• complete convolution via matrix multiplication

𝐾2

𝐲 𝐖 𝐱

𝐶𝐾2

= ××𝑀

× 𝐶



Property 1: Equivalent Standard Convolution

Every GDWS convolution has an equivalent standard 2D convolution with 
weight matrix:

𝐖G = 𝐖P ×𝐖D ∈ ℝ
𝑀×𝐶𝐾2

GDW(𝐖D) PW(𝐖P) 𝒴

GDWS convolution

CONV(𝐖G)𝒳 𝒴

standard 2D convolution

𝒳



Property 2: GDW Convolution Matrix

The weight matrix of a GDW convolution has a block-diagonal structure: 



Structure of GDWS-equivalent Standard Convolution

Lemma. The GDWS-equivalent standard 2D convolution weight matrix 𝐖G

can be expressed as:

𝐖G,𝑐 ∈ ℝ𝑀×𝐾2 & rank 𝐖G,𝑐 ≤ min 𝑔𝑐 , 𝐾
2 ∀𝑐 ∈ [𝐶]



Convolution Approximation Error

𝑒 𝐖,𝐐, 𝛂 = ෍

𝑐=1

𝐶

𝛼𝑐 𝐖𝑐 − 𝐐𝑐 F
2

where: 

– 𝐖 = [𝐖1| … |𝐖𝐶], 𝐐 = [𝐐1| … |𝐐𝐶], and 𝐖𝑐 , 𝐐𝑐 ∈ ℝ
𝑀×𝐾2 ∀𝑐 ∈ [𝐶]

– ∙ F denotes the Frobenius norm of a matrix

– 𝛂 ∈ ℝ+
𝐶 is the weight error vector

• Note that 𝛼𝑐 = 1 ∀𝑐 ∈ [𝐶] simplifies 𝑒 𝐖,𝐐, 𝛂 to 𝐖−𝐐 F



Convolution Approximation Error

𝑒 𝐖,𝐐, 𝛂 = ෍

𝑐=1

𝐶

𝛼𝑐 𝐖𝑐 − 𝐐𝑐 F
2

where: 

– 𝐖 = [𝐖1| … |𝐖𝐶], 𝐐 = [𝐐1| … |𝐐𝐶], and 𝐖𝑐 , 𝐐𝑐 ∈ ℝ
𝑀×𝐾2 ∀𝑐 ∈ [𝐶]

– ∙ F denotes the Frobenius norm of a matrix

– 𝛂 ∈ ℝ+
𝐶 is the weight error vector

• Note that 𝛼𝑐 = 1 ∀𝑐 ∈ [𝐶] simplifies 𝑒 𝐖,𝐐, 𝛂 to 𝐖−𝐐 F



Main Result: Error-constrained Optimal Approximation

Theorem. Given a (𝐶, 𝐾,𝑀) standard 2D convolution with weight matrix 
𝐖, the (𝐶, 𝐾, 𝐠,𝑀) GDWS approximation with weight matrix ෡𝐖 that 

minimizes the complexity 𝛾 𝐠 subject to 𝑒 𝐖, ෡𝐖, 𝛂 ≤ 𝛽 (for some 𝛽 ≥

0), can be constructed in polynomial time via the LEGO Algorithm.

That is:

෡𝐖 = argmin
𝐐: 𝑒 𝐖,𝐐,𝛂 ≤𝛽

𝛾 𝐠 = argmin
𝐐: 𝑒 𝐖,𝐐,𝛂 ≤𝛽

෍

𝑐=1

𝐶

𝑔𝑐

can be solved ∀𝛂 ∈ ℝ+
𝐶 optimally and efficiently



Main Result: Error-constrained Optimal Approximation

Theorem. Given a (𝐶, 𝐾,𝑀) standard 2D convolution with weight matrix 
𝐖, the (𝐶, 𝐾, 𝐠,𝑀) GDWS approximation with weight matrix ෡𝐖 that 

minimizes the complexity 𝛾 𝐠 subject to 𝑒 𝐖, ෡𝐖, 𝛂 ≤ 𝛽 (for some 𝛽 ≥

0), can be constructed in polynomial time via the LEGO Algorithm.

That is:

෡𝐖 = argmin
𝐐: 𝑒 𝐖,𝐐,𝛂 ≤𝛽

𝛾 𝐠 = argmin
𝐐: 𝑒 𝐖,𝐐,𝛂 ≤𝛽

෍

𝑐=1

𝐶

𝑔𝑐

can be solved ∀𝛂 ∈ ℝ+
𝐶 optimally and efficiently



LEGO: Least Complex Error-constrained GDWS Optimal 
Approximation

• greedy construction algorithm



LEGO: Least Complex Error-constrained GDWS Optimal 
Approximation

• optimality due to (1) Eckart-Young [Psych., 1936] & (2) GDWS Lemma 



Constructing GDWS Networks

CONV(𝐖(1))𝐱 CONV(𝐖(𝐿)) 𝒚

robust CNN 𝑓

start with a pre-trained robust CNN 𝑓1



2

Constructing GDWS Networks

CONV(𝐖(1))𝐱 CONV(𝐖(𝐿)) 𝒚

compute the per-layer sensitivity based 𝛂𝑙

𝛂1 𝛂𝐿



2

Constructing GDWS Networks

CONV(𝐖(1))𝐱 CONV(𝐖(𝐿)) 𝒚

compute the per-layer sensitivity based 𝛂𝑙

𝛂1 𝛂𝐿

inspired by [Sakr et al., ICML’17]:

𝛼𝑐,𝑙 = 𝔼𝑥 ෍
𝑗=1
𝑗≠𝑛𝑥

𝑁 𝐃𝑥,𝑗
𝑐,𝑙

F

2

2𝛿𝑥,𝑗
2 ∀𝑙 ∈ 𝐿 , ∀𝑐 ∈ [𝐶𝑙]



3

Constructing GDWS Networks

CONV(𝐖(1))𝐱 CONV(𝐖(𝐿)) 𝒚

construct per-layer optimal GDWS approximation with constraint 𝛽

𝛂1

LEGO

𝐖(1)

GDW(𝐖D
(1)

) PW(𝐖P
(1)

)

𝛽

𝐖D
(1)

𝐖P
(1)

𝛂𝐿

LEGO

𝐖(𝐿)

GDW(𝐖D
(𝐿)

) PW(𝐖P
(𝐿)

)

𝛽

𝐖D
(𝐿)

𝐖P
(𝐿)

𝒚𝐱



3

Constructing GDWS Networks

CONV(𝐖(1))𝐱 CONV(𝐖(𝐿)) 𝒚

construct per-layer optimal GDWS approximation with constraint 𝛽

𝛂1

LEGO

𝐖(1)

GDW(𝐖D
(1)

) PW(𝐖P
(1)

)

𝛽

𝐖D
(1)

𝐖P
(1)

𝛂𝐿

LEGO

𝐖(𝐿)

GDW(𝐖D
(𝐿)

) PW(𝐖P
(𝐿)

)

𝛽

𝐖D
(𝐿)

𝐖P
(𝐿)

𝒚𝐱

robust GDWS CNN መ𝑓



4

Constructing GDWS Networks

deploy መ𝑓 on the Jetson

GDW(𝐖D
(1)

) PW(𝐖P
(1)

) GDW(𝐖D
(𝐿)

) PW(𝐖P
(𝐿)

) 𝒚𝐱

robust GDWS CNN መ𝑓



Experimental Results & Comparisons



Pre-adversarially Trained Networks– CIFAR-10 

• preserves both 𝓐𝐫𝐨𝐛 and 𝓐𝐧𝐚𝐭 of original baselines

• dramatically improves the FPS in spite of modest reductions in 
model size



Comparison with Lightweight Networks – CIFAR-10

• natural question: why not train lightweight networks from scratch,  
instead of approximating pre-trained complex networks with GDWS?

• better 𝓐𝒓𝒐𝒃 and 𝓐𝒏𝒂𝒕 than all lightweight networks

• DWS-like FPS and requiring no extra training 



Comparison with Lightweight Networks – CIFAR-10

• natural question: why not train lightweight networks from scratch,  
instead of approximating pre-trained complex networks with GDWS?

• better 𝓐𝒓𝒐𝒃 and 𝓐𝒏𝒂𝒕 than all lightweight networks

• DWS-like FPS and requiring no extra training 



Comparison with RobNet [CVPR’20]– CIFAR-10

• RobNet: irregular cell structure leads to poor FPS on Jetson

• GDWS + WRN-28-4: similar robustness, drastic improvements in FPS



Comparison with ADMM [ICCV’19]– CIFAR-10

• ADMM: high FPS, compromises robustness

• GDWS: high FPS, preserves robustness



Comparison with HYDRA [NeurIPs’20]– CIFAR-10

• HYDRA: compromises robustness, minimal improvements in FPS

• GDWS: preserves robustness and boosts FPS significantly



Comparison with HYDRA [NeurIPs’20]– CIFAR-10

• GDWS + HYDRA: high compression ratios, preserves robustness, and 
massive improvements in FPS compared to the pruned baseline



Defending against Union of Perturbation Models – CIFAR-10

• pre-trained MSD models from [Maini et al., ICML’20]

• GDWS: negligible drop in 𝓐𝒏𝒂𝒕 and 𝓐𝒓𝒐𝒃
𝐔 while improving the FPS



Summary

• GDWS convolutions are universal and efficient approximations of 2D convolutions 

• dramatically improve FPS while preserving robust accuracy

• operate on pre-trained models → no additional training



Thank You!

Acknowledgement:
This work was supported by the Center for Brain-Inspired Computing (C-BRIC) and Artificial Intelligence
Hardware (AIHW) funded by the Semiconductor Research Corporation (SRC) and the Defense Advanced
Research Projects Agency (DARPA).


