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Limitations of Existing Techniques

• reductions often don’t translate to hardware

• make AT more expensive

• ad hoc in nature, no theoretical basis behind them
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Standard 2D Convolution as a Matrix Multiplication
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Standard 2D Convolution as a Matrix Multiplication

• matrix vector multiplication for one output channel vector

• complete convolution via matrix multiplication
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Property 1: Equivalent Standard Convolution

Every GDWS convolution has an equivalent standard 2D convolution with 
weight matrix:

𝐖G = 𝐖P ×𝐖D ∈ ℝ
𝑀×𝐶𝐾2

GDW(𝐖D) PW(𝐖P) 𝒴

GDWS convolution

CONV(𝐖G)𝒳 𝒴

standard 2D convolution

𝒳



Property 2: GDW Convolution Matrix

The weight matrix of a GDW convolution has a block-diagonal structure: 



Structure of GDWS-equivalent Standard Convolution

Lemma. The GDWS-equivalent standard 2D convolution weight matrix 𝐖G

can be expressed as:

𝐖G,𝑐 ∈ ℝ𝑀×𝐾2 & rank 𝐖G,𝑐 ≤ min 𝑔𝑐 , 𝐾
2 ∀𝑐 ∈ [𝐶]
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Main Result: Error-constrained Optimal Approximation

Theorem. Given a (𝐶, 𝐾,𝑀) standard 2D convolution with weight matrix 
𝐖, the (𝐶, 𝐾, 𝐠,𝑀) GDWS approximation with weight matrix ෡𝐖 that 

minimizes the complexity 𝛾 𝐠 subject to 𝑒 𝐖, ෡𝐖, 𝛂 ≤ 𝛽 (for some 𝛽 ≥
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LEGO: Least Complex Error-constrained GDWS Optimal 
Approximation

• greedy construction algorithm



LEGO: Least Complex Error-constrained GDWS Optimal 
Approximation

• optimality due to (1) Eckart-Young [Psych., 1936] & (2) GDWS Lemma 



Constructing GDWS Networks

CONV(𝐖(1))𝐱 CONV(𝐖(𝐿)) 𝒚

robust CNN 𝑓

start with a pre-trained robust CNN 𝑓1
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inspired by [Sakr et al., ICML’17]:

𝛼𝑐,𝑙 = 𝔼𝑥 ෍
𝑗=1
𝑗≠𝑛𝑥

𝑁 𝐃𝑥,𝑗
𝑐,𝑙

F

2

2𝛿𝑥,𝑗
2 ∀𝑙 ∈ 𝐿 , ∀𝑐 ∈ [𝐶𝑙]
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Constructing GDWS Networks

deploy መ𝑓 on the Jetson
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Experimental Results & Comparisons



Pre-adversarially Trained Networks– CIFAR-10 

• preserves both 𝓐𝐫𝐨𝐛 and 𝓐𝐧𝐚𝐭 of original baselines

• dramatically improves the FPS in spite of modest reductions in 
model size



Comparison with Lightweight Networks – CIFAR-10

• natural question: why not train lightweight networks from scratch,  
instead of approximating pre-trained complex networks with GDWS?

• better 𝓐𝒓𝒐𝒃 and 𝓐𝒏𝒂𝒕 than all lightweight networks

• DWS-like FPS and requiring no extra training 
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Comparison with RobNet [CVPR’20]– CIFAR-10

• RobNet: irregular cell structure leads to poor FPS on Jetson

• GDWS + WRN-28-4: similar robustness, drastic improvements in FPS



Comparison with ADMM [ICCV’19]– CIFAR-10

• ADMM: high FPS, compromises robustness

• GDWS: high FPS, preserves robustness



Comparison with HYDRA [NeurIPs’20]– CIFAR-10

• HYDRA: compromises robustness, minimal improvements in FPS

• GDWS: preserves robustness and boosts FPS significantly



Comparison with HYDRA [NeurIPs’20]– CIFAR-10

• GDWS + HYDRA: high compression ratios, preserves robustness, and 
massive improvements in FPS compared to the pruned baseline



Defending against Union of Perturbation Models – CIFAR-10

• pre-trained MSD models from [Maini et al., ICML’20]

• GDWS: negligible drop in 𝓐𝒏𝒂𝒕 and 𝓐𝒓𝒐𝒃
𝐔 while improving the FPS



Summary

• GDWS convolutions are universal and efficient approximations of 2D convolutions 

• dramatically improve FPS while preserving robust accuracy

• operate on pre-trained models → no additional training



Thank You!
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