Generalized Depthwise-Separable Convolutions for Adversarially Robust and Efficient Neural Networks

Hassan Dbouk & Naresh Shanbhag

Department of Electrical and Computer Engineering

University of Illinois at Urbana-Champaign

deep nets are <u>vulnerable</u>

original sample

+.007 ×

decision: 'panda'

adversarial sample

decision: 'gibbon'

deep nets are vulnerable

original sample

decision: 'panda'

ac

 $+.007 \times$

adversarial sample

decision: 'gibbon'

deep nets are expensive

deep nets are <u>vulnerable</u> original sample + .007 × decision: 'panda' decision: 'gibbon'

deep nets are expensive

design **robust** and **accurate** deep nets that achieve **high FPS** when mapped onto edge hardware

deep nets are <u>vulnerable</u>

original sample

 $+.007 \times$

decision: 'panda'

decision: 'gibbon'

deep nets are expensive

design robust and accurate deep nets that achieve high FPS when mapped onto edge hardware

NVIDIA Jetson Xavier

Limitations of Existing Techniques

reductions often <u>don't</u> translate to hardware

Limitations of Existing Techniques

FPS measured on NVIDIA Jetson time measured on NVIDIA 1080 Ti

- reductions often <u>don't</u> translate to hardware
- make AT more expensive

Limitations of Existing Techniques

FPS measured on NVIDIA Jetson time measured on NVIDIA 1080 Ti

- reductions often <u>don't</u> translate to hardware
- make AT more expensive
- ad hoc in nature, **no theoretical** basis behind them

dramatically <u>improve</u> FPS while <u>preserving</u> robust accuracy

- dramatically <u>improve</u> FPS while <u>preserving</u> robust accuracy
- operate on <u>pre-trained</u> models → no additional training

- dramatically <u>improve</u> FPS while <u>preserving</u> robust accuracy
- operate on <u>pre-trained</u> models → no additional training
- optimal and efficient approximation algorithms developed

popularized by MobileNets [arXiv'17, CVPR'18]

popularized by MobileNets [arXiv'17, CVPR'18]

popularized by MobileNets [arXiv'17, CVPR'18]

popularized by MobileNets [arXiv'17, CVPR'18]

number of FLOPs required per forward pass:

$$H'W'C(K^2+M)$$

number of FLOPs required per forward pass:

$$H'W'\left(\sum_{c=1}^{C} g_c(K^2 + M)\right) = H'W'G(K^2 + M) = \gamma(\mathbf{g})$$

number of FLOPs required per forward pass:

$$H'W'\left(\sum_{c=1}^{C} g_c(K^2 + M)\right) = H'W'G(K^2 + M) = \gamma(\mathbf{g})$$

• how to choose the g_c 's?

number of FLOPs required per forward pass:

$$H'W'\left(\sum_{c=1}^{C} g_c(K^2 + M)\right) = H'W'G(K^2 + M) = \gamma(\mathbf{g})$$

• how to choose the g_c 's? \rightarrow optimal approximation algorithm

Standard 2D Convolution as a Matrix Multiplication

Standard 2D Convolution as a Matrix Multiplication

vectorizing inputs and outputs

Standard 2D Convolution as a Matrix Multiplication

- matrix vector multiplication for one output channel vector
- complete convolution via matrix multiplication

Property 1: Equivalent Standard Convolution

Every **GDWS** convolution has an equivalent **standard** 2D convolution with weight matrix:

$$\mathbf{W}_{\mathrm{G}} = \mathbf{W}_{\mathrm{P}} \times \mathbf{W}_{\mathrm{D}} \in \mathbb{R}^{M \times CK^{2}}$$

Property 2: GDW Convolution Matrix

The weight matrix of a GDW convolution has a block-diagonal structure:

Structure of GDWS-equivalent Standard Convolution

Lemma. The **GDWS**-equivalent **standard** 2D convolution weight matrix \mathbf{W}_{G} can be expressed as:

Convolution Approximation Error

$$e(\mathbf{W}, \mathbf{Q}, \boldsymbol{\alpha}) = \sqrt{\sum_{c=1}^{C} \alpha_c \|\mathbf{W}_c - \mathbf{Q}_c\|_{F}^2}$$

where:

- $-\mathbf{W} = [\mathbf{W}_1 | ... | \mathbf{W}_C], \mathbf{Q} = [\mathbf{Q}_1 | ... | \mathbf{Q}_C], \text{ and } \mathbf{W}_c, \mathbf{Q}_c \in \mathbb{R}^{M \times K^2} \ \forall c \in [C]$
- $-\|\cdot\|_{\mathrm{F}}$ denotes the Frobenius norm of a matrix
- $-\alpha \in \mathbb{R}^{\mathcal{C}}_+$ is the weight error vector

Convolution Approximation Error

$$e(\mathbf{W}, \mathbf{Q}, \boldsymbol{\alpha}) = \sqrt{\sum_{c=1}^{C} \alpha_c \|\mathbf{W}_c - \mathbf{Q}_c\|_{F}^2}$$

where:

- $-\mathbf{W} = [\mathbf{W}_1 | ... | \mathbf{W}_C], \mathbf{Q} = [\mathbf{Q}_1 | ... | \mathbf{Q}_C], \text{ and } \mathbf{W}_c, \mathbf{Q}_c \in \mathbb{R}^{M \times K^2} \ \forall c \in [C]$
- $-\|\cdot\|_{\mathrm{F}}$ denotes the Frobenius norm of a matrix
- $-\alpha \in \mathbb{R}^{\mathcal{C}}_+$ is the weight error vector
- Note that $\alpha_c = 1 \ \forall c \in [C]$ simplifies $e(\mathbf{W}, \mathbf{Q}, \boldsymbol{\alpha})$ to $\|\mathbf{W} \mathbf{Q}\|_{F}$

Main Result: Error-constrained Optimal Approximation

Theorem. Given a (C, K, M) standard 2D convolution with weight matrix \mathbf{W} , the (C, K, \mathbf{g}, M) GDWS approximation with weight matrix $\mathbf{\hat{W}}$ that minimizes the complexity $\gamma(\mathbf{g})$ subject to $e(\mathbf{W}, \mathbf{\hat{W}}, \mathbf{\alpha}) \leq \beta$ (for some $\beta \geq 0$), can be constructed in polynomial time via the LEGO Algorithm.

Main Result: Error-constrained Optimal Approximation

Theorem. Given a (C, K, M) standard 2D convolution with weight matrix \mathbf{W} , the (C, K, \mathbf{g}, M) GDWS approximation with weight matrix $\mathbf{\hat{W}}$ that minimizes the complexity $\gamma(\mathbf{g})$ subject to $e(\mathbf{W}, \mathbf{\hat{W}}, \mathbf{\alpha}) \leq \beta$ (for some $\beta \geq 0$), can be constructed in polynomial time via the LEGO Algorithm. That is:

$$\widehat{\mathbf{W}} = \underset{\mathbf{Q}: \ e(\mathbf{W}, \mathbf{Q}, \alpha) \leq \beta}{\operatorname{argmin}} \gamma(\mathbf{g}) = \underset{\mathbf{Q}: \ e(\mathbf{W}, \mathbf{Q}, \alpha) \leq \beta}{\operatorname{argmin}} \sum_{c=1}^{c} g_{c}$$

can be solved $\forall \alpha \in \mathbb{R}^{\mathcal{C}}_+$ optimally and efficiently

LEGO: Least Complex Error-constrained GDWS Optimal Approximation

```
Input: A (C, K, M) convolution W, weight error vector \boldsymbol{\alpha}, and
                  constraint \beta \geq 0.
   Output: A (C, K, \mathbf{g}, M) GDWS convolution W, satisfying e \leq \beta.
1 Compute SVDs of \mathbf{W}_c = \sum_{i=1}^{r_c} \sigma_{i,c} \mathbf{u}_{i,c} \mathbf{v}_{i,c}^{\mathrm{T}}
2 Initialize g_c = r_c, b = 0, c' = \arg\min_c \alpha_c \sigma_{r_c,c}^2, h = \alpha_{c'} \sigma_{r_c,c'}^2
3 while b+h<\beta do
4 b \leftarrow b + h \text{ and } g_{c'} \leftarrow g_{c'} - 1
 c' = \arg\min_{c} \alpha_c \sigma_{g_c,c}^2 
                                                                                                               // q_c > 1
6 \quad h = \alpha_{c'} \sigma_{r, c'}^2
7 Compute \hat{\mathbf{W}}_c via truncated SVD of \mathbf{W}_c with rank g_c:
     \hat{\mathbf{W}}_c = \sum_{i=1}^{g_c} \sigma_{i,c} \mathbf{u}_{i,c} \mathbf{v}_{i,c}^{\mathrm{T}}
s Construct \hat{\mathbf{W}} = [\hat{\mathbf{W}}_1 | ... | \hat{\mathbf{W}}_C]
```

greedy construction algorithm

LEGO: Least Complex Error-constrained GDWS Optimal Approximation

```
Input: A (C, K, M) convolution W, weight error vector \boldsymbol{\alpha}, and
                  constraint \beta \geq 0.
   Output: A (C, K, \mathbf{g}, M) GDWS convolution W, satisfying e \leq \beta.
1 Compute SVDs of \mathbf{W}_c = \sum_{i=1}^{r_c} \sigma_{i,c} \mathbf{u}_{i,c} \mathbf{v}_{i,c}^{\mathrm{T}}
2 Initialize g_c = r_c, b = 0, c' = \arg\min_c \alpha_c \sigma_{r_c,c}^2, h = \alpha_{c'} \sigma_{r_c,c'}^2
з while b+h<\beta do
4 b \leftarrow b + h \text{ and } g_{c'} \leftarrow g_{c'} - 1
 c' = \arg\min_{c} \alpha_c \sigma_{g_c,c}^2 
                                                                                                               // q_c > 1
6 \quad h = \alpha_{c'} \sigma_{r, \iota, c'}^2
7 Compute \hat{\mathbf{W}}_c via truncated SVD of \mathbf{W}_c with rank g_c:
     \hat{\mathbf{W}}_c = \sum_{i=1}^{g_c} \sigma_{i,c} \mathbf{u}_{i,c} \mathbf{v}_{i,c}^{\mathrm{T}}
s Construct \hat{\mathbf{W}} = [\hat{\mathbf{W}}_1 | ... | \hat{\mathbf{W}}_C]
```

• optimality due to (1) Eckart-Young [Psych., 1936] & (2) GDWS Lemma

inspired by [Sakr et al., ICML'17]:

$$\alpha_{c,l} = \mathbb{E}_{x} \left[\sum_{\substack{j=1\\j \neq n_{x}}}^{N} \frac{\left\| \mathbf{D}_{x,j}^{(c,l)} \right\|_{F}^{2}}{2\delta_{x,j}^{2}} \right] \quad \forall l \in [L], \forall c \in [C_{l}]$$

 $oxed{2}$ compute the per-layer sensitivity based $oldsymbol{lpha}_l$

Constructing GDWS Networks

Experimental Results & Comparisons

Pre-adversarially Trained Networks— CIFAR-10

Models	$\mid \mathcal{A}_{\mathbf{nat}} \mid \% \mid$	$\mathcal{A}_{\mathbf{rob}}$ [%]	Size [MB]	FPS
ResNet-50 + GDWS ($\beta = 0.001$)	84.21	53.05	89.7	16
	83.72	52.94	81.9	37
WRN-28-4	84.00	51.80	22.3	17
+ GDWS $(\beta = 1 \times 10^{-5})$	83.27	51.70	18.9	65
ResNet-18 + GDWS ($\beta = 0.005$)	82.41	51.55	42.6	28
	81.17	50.98	29.1	104
$VGG-16 + GDWS (\beta = 0.25)$	77.49	48.92	56.2	36
	77.17	49.56	28.7	129

- preserves both \mathcal{A}_{rob} and \mathcal{A}_{nat} of original baselines
- dramatically improves the FPS in spite of modest reductions in model size

Comparison with Lightweight Networks – CIFAR-10

 natural question: why not train lightweight networks from scratch, instead of approximating pre-trained complex networks with GDWS?

Comparison with Lightweight Networks – CIFAR-10

 natural question: why not train lightweight networks from scratch, instead of approximating pre-trained complex networks with GDWS?

Models	$\mid \mathcal{A}_{\mathbf{nat}} \mid \% \mid$	$\mathcal{A}_{\mathbf{rob}}$ [%]	Size [MB]	FPS
ResNet-18 + GDWS	81.17 77.17	50.98	29.1	104
VGG-16 + GDWS		49.56	28.7	129
MobileNetV1	79.92	49.08	12.3	125
MobileNetV2	79.59	48.55	8.5	70
ResNet-18 (DWS)	80.12	48.52	5.5	120
ResNet-20	74.82	47.00	6.4	125

- better \mathcal{A}_{rob} and \mathcal{A}_{nat} than all lightweight networks
- <u>DWS-like</u> FPS and requiring <u>no extra training</u>

Comparison with RobNet [CVPR'20]— CIFAR-10

Models	$\mid \mathcal{A}_{ ext{nat}} \mid \% vert$	$\mathcal{A}_{\mathbf{rob}}$ [%]	Size [MB]	FPS
RobNet	82.72	52.23	20.8	5
ResNet-50	84.21	53.05	89.7	16
+ GDWS	83.72	52.94	81.9	37
WRN-28-4	84.00	51.80	22.3	17
+ GDWS	<u>83.27</u>	<u>51.70</u>	18.9	<u>65</u>

- RobNet: irregular cell structure leads to poor FPS on Jetson
- GDWS + WRN-28-4: similar robustness, drastic improvements in FPS

Comparison with ADMM [ICCV'19]— CIFAR-10

Models	$\mathcal{A}_{\mathbf{nat}}$ [%]	$\mathcal{A}_{\mathbf{rob}}$ [%]	Size [MB]	FPS
VGG-16	77.45	45.78	56.2	36
+ GDWS ($\beta = 0.5$)	<u>76.40</u>	46.28	38.8	<u>119</u>
VGG-16 ($p = 25\%$)	77.88	43.80	31.6	26
VGG-16 $(p = 50\%)$	75.33	42.93	14.0	113
VGG-16 $(p = 75\%)$	70.39	41.07	3.5	174
ResNet-18	80.65	47.05	42.6	28
+ GDWS ($\beta = 0.75$)	<u>79.13</u>	46.15	30.4	<u>105</u>
ResNet-18 ($p = 25\%$)	81.61	42.67	32.1	31
ResNet-18 ($p = 50\%$)	79.42	42.23	21.7	60
ResNet-18 $(p = 75\%)$	74.62	43.23	11.2	74

- ADMM: high FPS, compromises robustness
- GDWS: high FPS, preserves robustness

Comparison with HYDRA [NeurlPs'20]— CIFAR-10

Models	$\mid \mathcal{A}_{\mathbf{nat}} \mid \% \mid$	$\mathcal{A}_{\mathbf{rob}}$ [%]	Size [MB]	FPS
VGG-16	82.72	51.93	58.4	36
+ GDWS $(\beta = 0.5)$	82.53	50.96	50.6	102
VGG-16 $(p = 90\%)$	80.54	49.44	5.9	36
+ GDWS $(\beta = 0.1)$	80.47	49.52	31.5	93
VGG-16 $(p = 95\%)$	78.91	48.74	3.0	36
+ GDWS ($\beta = 0.1$)	78.71	48.53	18.3	106
VGG-16 $(p = 99\%)$	73.16	41.74	0.6	41
+ GDWS ($\beta = 0.02$)	$\underline{72.75}$	41.56	$\underline{2.9}$	<u>136</u>

- HYDRA: compromises robustness, minimal improvements in FPS
- GDWS: <u>preserves</u> <u>robustness</u> and <u>boosts</u> FPS significantly

Comparison with HYDRA [NeurlPs'20]— CIFAR-10

Models	$\mid \mathcal{A}_{\mathbf{nat}} \mid \% \mid$	$\mathcal{A}_{\mathbf{rob}}$ [%]	Size [MB]	FPS
$VGG-16 + GDWS (\beta = 0.5)$	82.72	51.93	58.4	36
	82.53	50.96	50.6	102
VGG-16 $(p = 90\%)$	80.54	49.44	5.9	36
+ GDWS $(\beta = 0.1)$	80.47	49.52	31.5	93
VGG-16 $(p = 95\%)$	78.91	48.74	3.0	36
+ GDWS $(\beta = 0.1)$	78.71	48.53	18.3	106
VGG-16 $(p = 99\%)$	73.16	41.74	0.6	41
+ GDWS $(\beta = 0.02)$	72.75	41.56	2.9	136

 GDWS + HYDRA: <u>high</u> compression ratios, <u>preserves</u> robustness, and massive <u>improvements</u> in FPS compared to the pruned baseline

Defending against Union of Perturbation Models – CIFAR-10

Models	$\mid \mathcal{A}_{\mathbf{nat}} \mid \% \mid$	$\mathcal{A}^{\infty}_{\mathbf{rob}}$ [%]	$\mathcal{A}^1_{f rob}\ [\%]$	$\mathcal{A}^2_{\mathbf{rob}}$ [%]	$\mathcal{A}_{\mathbf{rob}}^{\mathbf{U}}$ [%]	FPS
ResNet-18	81.74	47.50	53.60	66.10	46.10	28
+ GDWS ($\beta = 0.0025$)	81.67	47.60	53.60	66.00	46.30	87
+ GDWS ($\beta = 0.005$)	81.43	47.30	52.60	65.60	45.70	92
+ GDWS ($\beta = 0.01$)	81.10	47.20	$\underline{52.20}$	65.00	$\underline{45.20}$	101

- pre-trained MSD models from [Maini et al., ICML'20]
- GDWS: negligible drop in \mathcal{A}_{nat} and $\mathcal{A}_{rob}^{\mathbf{U}}$ while improving the FPS

Summary

- GDWS convolutions are universal and efficient approximations of 2D convolutions
- dramatically <u>improve</u> FPS while <u>preserving</u> robust accuracy
- operate on <u>pre-trained</u> models → *no additional training*

Thank You!

Acknowledgement:

This work was supported by the Center for Brain-Inspired Computing (C-BRIC) and Artificial Intelligence Hardware (AIHW) funded by the Semiconductor Research Corporation (SRC) and the Defense Advanced Research Projects Agency (DARPA).