Message Passing in
Machine Learning

Wee Sun Lee
School of Computing
National University of Singapore
leews@comp.nus.edu.sg

Neural Information Processing Systems December 2021



Message Passing

Machine learning using distributed
algorithm on graph ¢ = (V, E).

Node v; € VV do local computation,
depends only on information at v;,

neighbours, and incident edges ¢;; € E.

Information sent through e;; to v; as
message m;;.



Why Message Passing Algorithms?

Effective in practice!
» Graph neural networks
« Transformer
 Probabilistic graphical model inference
 Value iteration for Markov decision process ....

Potentially easier to parallelize.



Plan for Tutorial

Cover better understood, more “interpretable” models and algorithms
 Probabilistic graphical models (PGM), inference algorithms
« Markov decision process (MDP), decision algorithm
What do the components of the models represent?
What objective functions are the algorithms are optimizing for?

Discuss more flexible, less “interpretable” methods
» Graph neural networks
» Attention networks, transformer

Connect to PGM and MDP, help understand the inductive biases.



Outline

* Message Passing

* Probabilistic Graphical Models

» Markov Decision Process

» Graph Neural Networks and Attention Networks



Probabilistic Graphical Model

Focus on Markov random fields X1
N random variables {X;, X,, ..., Xy} A
b
p(x) = p(X1 = x1, X3 = X3, .., X = Xp) ?
factors into a product of functions B
1 X3
p(x) = El_[lpa(xa) C
“ X
* M non-negative compatibility or potential *
functions 14,9, ..., Yy Graphical representation using factor graph:
* x,, the argument of Y, is a subset of bipartite graph, each factor node connected

{21,235, oo, X5} to variable nodes that it depends on

1
« Z, the partition function, is the ~Wa(x1, x3)p (X1, X2, X4 )P (X4)
normalizing constant



When compatibility functions always positive, can write

1
p() =] [wa(xa)

1
_Ze

—E(x)

where

M
F(0) == ) Inih(x)

is the energy function.



Error Correcting Codes T A REDONDAS

~ BTTBRSS. )

y 1C} X1 Codeword “E'@L :Ex‘r

Vi observed, yzg X, :_’:I e -, ;f:-
corrupted

version of x; Q

Y3 X3 > C

O 1 —

YVa X4 o Parity bits
o
(0]

1ifx;@x,Dx, =1
0 otherwise

KL

Yalxy, x3,x4) = {

[Fig from http://www.inference.org.uk/mackay/codes/gifs/]



MAP, Marginals, and Partition Function

Maximum a posteriori (MAP): “E@ﬂﬁbﬁ?‘
find a state x that maximizes p(x) ER S '
« Equivalently minimizes the energy E(x)

Marginal: probabilities for individual variable

By =
....

Pi(x) = Xp\x; P(X)
Partition function: Compute the normalizing

constant
=) | [vexa



Deeplab

Semantic Segmentation

In conditional random field (CRF),

the conditional distribution

p(x|I) = %e"f("") is modeled.

* For semantic segmentation I is the
image and x is the semantic class label.

E(x|I) = X; ¢ (i |D + X (f)p(xi»lel)

Aeroplane  Bicycle
Cat Chair
Potted-Plant Sheep

[Figs from Zheng et. al. 2015]

CRF-RNN

Ground Truth




Belief Propagation

Message passing algorithm
Sum product computes the marginals

niqg(x;) = 1_[ me; (x;)
ceEN(i)\a
maG) = 5 YaGa) | [ ni0)
Xa\Xi JEN(a)\i
bi(x) & 1_[ Mg (X;)
a€eNn (i)

Max product solves the MAP problem: just replace
sum with max in message passing

Works exactly on trees, dynamic

programming

Correctness



Belief Propagation on Trees

Every variable and factor nodes compute messages in parallel
at each iteration
 After O(D) iterations, where D is the diameter of the tree, all messages
and all marginals are correct.
Suffices to pass messages from leaves to the root and back
» More efficient for serial computation



Loopy Belief Propagation

Belief propagation can also be applied to general probabilistic graphical

models %
Often called loopy belief propagation /O\

As a message passing algorithm:

Init all messages n;, ,m,; to all-one vectors
repeat T iterations
for each variable i and factor a compute (in parallel)
Niq (%) = [cen(ina Mei(x;) for each a € N(i)
Mai () = X Pa(xa) [Tjen(aninij(x;) for each i € N(a)

Xq\X;

return b;,», = ZiiHaEN(i) mg;(x;) for each i



Belief propagation may fail
when there are cycles
« May not even converge

» Often works well in practice
when converges

Variational inference ideas
help understand loopy belief
propagation

=0

Y

C
Niq (x;) = 1_[ me; (x;)

cEN(i)\a

mal(x)— Z l/)a(xa) 1_[ nij(xj)

Xa\Xi JEN(a\i

bi(xi) X 1_[ mai(xi)

a€en (i)




Variational Principles

View message passing algorithms through lens of variational
principles

* A variational principle solves a problem by viewing the solution
as an extremum (maximum, minimum, saddle point) of a
function or functional

» To understand or “interpret” an algorithm, ask “what objective
might the algorithm implicitly be optimizing for?”



Variational Inference

In standard variational inference, For target belief p and arbitrary belief q
we approximate the Helmholtz Fy = F(q) — KL(q||p)
free energy

. where F(q) is the variational free
Fy=—InZ
energy

Z=Y, e E®, [p(x) = e E™ /7 ] F(q) = z qg()E(x) + z qg(x)Ing(x)

by turning it into an optimization

problem and KL(q||p) is the Kullback Lieber
Derivation: divergence between q and p
Inp(x) = —E(x)—InZ q(x)
__ e zqu(x) +zq(x> Inp(x) KL(qllp) = Zx a(x) e

Z a@ EC) + Z 4@ Inp() + Z a()Inq(x) - Z 4@ Inq()

= z a0 E@)+ z @ Ing(x) - Z a) Inq(x) /p(x)



KL(q|lp) = 0 and is zero when
q="r.
From Fy = F(q) — KL(q||p),
F(q) is an upper bound for Fy

« Minimizing F(q) improves

approximation, exact when g = p

Minimizing F(q) intractable in
general

» One approximate method is to use
a tractable g

* Mean field uses a factorized
belief

N
anr (0 = | [ a6
i=1

Terminology
The variational free energy
F@) = ) a@E® + ) q()Inq®)
C= U -H@
where U(q)= X q(x)E (x)

is the variational average energy

and H(q)= -Xx q(x) In q(x)
is the variational entropy.



Mean Field

Mean field often solved by coordinate descent

* Optimize one variable at a time, holding other variables
constant

qj (x]) - eXp ( Zx\x Hl-‘#] QL(xi) E(x)) 0

J Derivation

Coordinate descent converges to local optimum.
 Local optimum is fixed point of updates for all variables.
 Parallel updates can also be done but may not always converge



Previously
Mean field as message passing q;(x;) = Zl]r,exp( Al ql(xz)E(x))
Recall E(x) = —ZM In wa(xa)

q; (x]) exp <z 1_[ ql(xl) Z In 1/}a (xa)> Does not depend on X, constant

x\X oo
N

Zl,exp< >y T npacel Sy JaGompee

a€N() PV i) aN() TV i)

To compute g;(x;), only need 1, (x,) for neighbouring factors a € N(j)



0

B

A
As a message passing algorithm on a factor graph: C

repeat T iterations
for each variable j compute (serially or in parallel)

Maj (X)) = Zixg\x, den(@),izj 9i(x) In g (xg) for a € N(j) in parallel

Clj(xj) = le{exp (ZaEN(j) Mgj (xj))



Loopy Belief Propagation and
Bethe Free Energy’

For a tree-structured factor graph, the variational
free energy 0
F@) =) q@E@+ ) q@ng() Derivation
M X X
= — Z z q,(x,) Iny,(x,) Variational average energy
a=1 Ya

M
Ga(Xq)
]
* ; zxa e [ien(a) @i (i)

+ i Zx.qi(xi) In q;(x;)
i=1 :

1 Yedidia, Jonathan S., William T. Freeman, and Yair Weiss. "Constructing free-energy approximations and
generalized belief propagation algorithms." IEEE Transactions on information theory 51.7 (2005): 2282-2312.

Variational entropy



For a tree-structured factor graph, the variational free energy

F(9) = Z IE@ + ) a®Ing()
N
Z D, dax)Inaleo) + Z D delrin 22 ana)

For the Bethe approximation, the following Bethe free energy
Fpetne(q) = Ugetne(q) — Hperne (9) is used even though the graph may
not be a tree, where

Upetne(4) = 2 D 4a(xa) Iy (x)

Hpethe = z zxa% (xa)l ol (x ) z Z:xiql'(xi) In g;(x;)

lEN(a) qdi




In addition, we impose the constraints
* 2xiqi(xi) =Xy, qa(xg) =1
* q;(x;) =0, ga(x4) =0
* Yy \x; 4a(Xa) = q;(x;)

What does loopy belief propagation optimize?

Loopy belief propagation equations give the stationary points of
the constrained Bethe free energy.

Derivation



We only specify the factor
marginals q,(x,) and the variable
marginals q;(x;).

* There may be no distribution q
whose marginals agree with

qa(xg)

 Often called pseudomarginals
instead of marginal

Furthermore, the Bethe entropy
Hg.:1e(q) is an approximation of
the variational entropy when the
graph is not a tree

Figure from Wainwright and Jordan 2008.

The set of marginals from valid probability
distributions M (G) is a strict subset of the
set of of pseudomarginals L(G).



Variational Inference Methods

Mean field minimizes the variational free energy
F(q) =U(q) —H(q)
» Assumes fully factorized g for tractability
« Can be extended to other tractable g: structured mean field
* Minimizes upper bound of Helmholtz free energy F;, = —InZ

« Converges to local optimum if coordinate descent used, may
not converge for parallel update

« Update equations be computed as message passing on graph



Variational Inference Methods

Loopy belief propagation can be viewed as minimizing Bethe free

ene_rg.y, FBethe (CI) — UBethe (Q) o HBethe (CI), an approximation of
variational free energy

« May not be an upper bound of Fy
» Resulting g may not be consistent with a probability distribution
« May not converge, but performance often good when converges

» Message passing on a graph, various methods to help convergence,
e.g. scheduling messages, damping, etc.

» Extension to generalized belief propagation for other region based free
energy, e.g. Kikuchi free energy
Other commonly found variational inference message passing

methods include expectation propagation, also max product
linear programming relaxations for finding MAP approximations.



Parameter Estimation

Learn parameterized compatibility functions or components of energy
function E(x|0) = = Y¥ny,(x,|0)

« Can do maximum likelihood estimation
* If some variables are not observed, can do the EM algorithm

* If inference intractable, variational approximation for estimating the
latent variables is one approach: variational EM
« With mean field approximation, maximize a lower bound of likelihood
function
» Can also treat parameters as latent variables: Variational Bayes

For this tutorial, focus on unrolling the message passing algorithm into
a deep neural network and doing end-to-end learning (later).



Outline

* Message Passing

* Probabilistic Graphical Models

 Markov Decision Process

» Graph Neural Networks and Attention Networks



Markov Decision Process

Markov Decision Process (MDP) is
defined by (S, A, T, R)

State S : Current description of the

world

» Markov: the past is irrelevant once
we know the state

» Navigation example: Position of the
robot B

Robot navigation

©



Robot navigation

MDP (S, A, T, R)

Actions A : Set of available
actions
» Navigation example:
* Move North
* Move South

 Move East
* Move West




Robot navigation

MDP (S, A, T, R) @
Transition function T : {i

* T(s,a,s") = P(s'|s,a) ii
» Navigation example: .

» Darker shade, higher probability




MDP (S, A, T,R)

Reward function R : Reward
received when action a in state s
results in transition to state s’
* R(s,a,s")
* Navigation example:
« 100 if s" is Home

« -100 if s" is in the danger zone
» -1 otherwise

 Can be a function of a subset of
s,a, s’ as in navigation example

Jaoy

Robot navigation

$
-y
e e,

©



Example of 3 state, two action
Markov Decision Process
(S,A,T,R)

» Transition can be sparse as in
navigation example

[Fig by waldoalvarez CC BY-SA 4.0 ]



Robot navigation

MDP (S, A, T, R) @

Policy n: Function from state and
time step to action

ca=m(st) $E
S

» Navigation example:
» Which direction to move at current

Jaoy



Robot navigation

MDP (S, A, T, R) @

Value function I.: How good is a

policy m when started from state s g
* Vi(so) = X0 E[R(s¢, (e, £), Ser1) ’ﬂ
T is the horizon E

* When horizon is infinite, usually
use discounted reward
« Vi(s) = XiZo Efy R (s, (e, ), Se41)
* y € (0,1) is discount factor

S e,

Jaoy




MDP (S,A, T, R)

Optimal policy =*: policy that

maximizes
T—1

Vie(so) = t_OE[R(St;ﬂ(St; t),St+1)

* For infinite horizon, discounted
reward MDP, optimal policy n*(s) is
stationary (independent of t)

« Optimal value V(s) = V+(s): value
corresponding to optimal policy

Sl

Robot navigation

$
-y
e e,

©



Value Iteration Algorithm

Dynamic programming algorithm for solving MDPs

Let V' (s,T) denote the optimal value at s when horizon is T,
initialized with V' (s,0) = v,.

Then
V(s,T) = E[R(s, a,s')+V(s, T —1)]
a

= mc?xz: p(s'|a,s )(R(s,a,s") +V(s', T — 1))



+5

V(s, T) = mc?xz p(s'|a,s )(R(s,a,s") +V(s', T — 1))

As message passing on a graph
* Node at each state s, initialized to V (s, 0) = v,
 Utilize |A| ‘heads’, one for each action a

* repeat T iterations 1
for each action a of each state s (in parallel)
Collect p(s’la,s Y(R(s,a,s")+V(s")) fromall s"toaats
if p(s'|a,s ) non-zero
Sum all messages

for each node s (in parallel)
Collect message from its corresponding actions a

Take the maximum of the messages

[Fig by waldoalvarez CC BY-SA 4.0 ]



Shortest path example ..
L n Robot navigation
» Deterministic transition (only one
next state with prob 1 from each @
action)
* Initialize VV (s, 0) = 0 for goal state,
init to —oo for other states

-4
- Self loop with 0 reward at goal state $
for all actions E
* Reward —w;; for moving from i to j,
— o if no edge between the two M
nodes

» Value iteration is Bellman-Ford
shortest path algorithm T

Jlapy



After k iterations, values at each
node is the value of the (-ve)
shortest path from the node to the
goal, reachable within k steps.

At initialization

Robot navigation

- ¢@

— 00 — 00 —Q00




After k iterations, values at each
node is the value of the (-ve)
shortest path from the node to the
goal, reachable within k steps.

After 1 iteration

Robot navigation

@

—oo | —oo | —1

g
-y
S,

Jaoy



After k iterations, values at each
node is the value of the (-ve)
shortest path from the node to the
goal, reachable within k steps.

After 2 iterations

Robot navigation

1@

—oo [ =2 [ -1

AI —o0 | -2
-y
S,

Jaoy



For the infinite horizon discounted case, the dynamic
programming equation (Bellman equation) is
V(s) = maxE[R(s,a,s’) +yV(s')]
a

— maaxz p(s'|a,s )(R(s,a,s") + yV(s"))

Same value iteration algorithm with message changed to
p(s'|la,s )(R(s,a,s") + yV(s"))
Converges to the optimal value function



Convergence of Value lteration

The optimal value function V (s) satisfies Bellman’s principle of optimality
V(s) =max ) p(s'la,s)(R(s,a,5") +YV(s))
a S/

The Bellman update B in value iteration transforms V; to V,,, as follows
Vera () = max ) p(s'|a,s)(R(5,,5) +¥V;(s)
S/

We denote this as V;,; = BV;.
The optimal value function is a fixed point of this operator V = BV.

The Bellman update is a contraction (for the max norm), i.e. 0
|BVy — BVl < vV — Val| Derivation




From Bellman’s equation, we have|l/ = BV|for the optimal value
function V.
Applying{V; = BV,_,|repeatedly and using contraction property

|BV; — BV, || < yllVy — Vs lljwe have
Ve = VIl = IBVe—y — BVI| < ylVeey = VIS ¥HIVe = VI

Distance converges exponentially to 0 for any initial value 1




Outline

* Message Passing

* Probabilistic Graphical Models

* Markov Decision Process

 Graph Neural Networks and Attention Networks



Graph Neural Networks

» Many effective graph neural networks (GNN): X1
GCN, GIN, ... %,
 Message passing neural networks X12
(MPNN)': general formulation for GNNs as @
message passing algorithms. Xoe @
* Input: G = (V, E), node attributes vectors x;,i € V, X13
edge attribute vectors x;;, (i,j) € E @ Xy
» Output: Label or value for graph classification or

regression, or a label/value for each node in
Structured prediction

! Gilmer, Justin, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E. Dahl. "Neural message
passing for quantum chemistry." In International conference on machine learning, pp. 1263-1272. PMLR, 2017



MPNN pseudocode

X2
Initialization: k) = x; for each v; € V X1
forlayers ¢ =1, ...,d @
for every edge (i,j) € E (in parallel) » @
mf] — MSG{)(hf_l,hf_l,vi,vj,xij) X33 a
for every node v; € V (in parallel)
hi = UP,({m{;:j € N())},h{™") @ g

return h{ for every v; € V or y = READ({h{:v; € V})

* MSG, is arbitrary function, usually a neural net

« UP, aggregrates the messages from neighbours (usually with a set
function) and combine with node embedding

* READ is a set function for graph classification or regression tasks



GNN properties

If depth and width are large enough, message

. N i
functions MSG, and update functions UP, are Otag:;th:
sufficiently powerful, and nodes can uniquely numbertes
distinguish each other, then the MPNN is layers

computationally universal’
« Equivalent to LOCAL model in distributed algorithms

« Can compute any function computable with respect to
the graph and attributes (just send all information,
including graph structure, to a single node, then
compute there).

Width: largest
embedding
dimension

! Loukas, Andreas. "What graph neural networks cannot learn: depth vs width.” ICLR 2020



When using graph neural
networks, we are often interested
in permutation invariance and
equivariance

Given an adjacency matrix 4, a
permutation matrix P, and
attribute matrix X containing the
attributes x; on the i-th row
* Permutation invariance:
f(PAPT,PX) = f(A,X)
* Permutation equivariance:
f(PAPT,PX) = Pf(A,X)

Example:
0 0 1 1 2 3
P = [1 0 0] VA = [4 5 6]
0 1 0 7 8 9
P permutes vertices (1,2,3) - (3,1,2)

PA swap the rows

0O 0 1711 2 31 7 8 9
[1 0 O] [4 5 6]= ll 2 3]
0 1 olLl7 8 91 14 5 6

(PA)PT swap the columns after that
7 8 9110 1 O 9 7 8
[1 2 3] [0 0 1]= [3 1 2]
4 5 6111 0 O 6 4 5



If MSG, does not depend on node  MPNN pseudocode

ids v;, v;, MPNN is permutation Initialization: h{ = x; for each v; € V
invariant and equivariant for any for 'ayerfs ¢ =1, ---rél O .
permutation matrix P, or every edge (i,/) € E (in parallel)
T B my; = MSG,(hi ™, by~ %5¥y, Xi)
MPNN(PAP ) PX) — PMPNN(A, X) for every node v; € V (in parallel)
« However, lose approximation hy = UP;({m};:j € N(D}, h{™")

power if messages do not depend  return h{ for every v; € V ory = READ({h{: v; €
on node ids — cannot distinguish V]
some graph structures

 Discrimination power at most as

powerful as the 1-dimensional *—o
Weisfeiler-Lehman (WL) graph ‘
isomorphism test, which cannot

distinguish certain graphs

» Graph isomorphism network (GIN)'
as powerful as 1-WL

1 Xu, Keyulu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. "How powerful are graph neural networks?" ICLR 2019



Drug Discovery H

N
Molecules naturally represented as /©/ \’(
raphs
grap HO

GNNs commonly used for
predicting properties of molecules,
e.g. whether it inhibits certain
bacteria, etc.

[Figs on paracetamol by Benjah-bmm27 and Ben
Mills are in the public domain]



Algorithmic Alignment

Sample complexity for learning a GNN is smaller for tasks that
the GNN is algorithmically aligned with'.

Graph Neural Network Bellman Ford Shortest Path
forlayers ¢ =1, ...,d fort=1,..,d
for v € V (in parallel) for v € V (in parallel)
hy = UP({MLP(h%~ %, R, w(u, v))}, ko) d[¢]lv] = mind[£ — 1][u] + w(w,v)

d[£][v] easy function to

approximate by MLP as In contrast, learning entire for loop
function of d[£ — 1][u], w . with a single function requires

Same MLP shared by all nodes, higher sample complexity
good inductive bias, so low
sample complexity

1 Xu, Keyulu, Jingling Li, Mozhi Zhang, Simon S. Du, Ken-ichi Kawarabayashi, and Stefanie Jegelka. "What can
neural networks reason about?.” ICLR 2020



Alignment of GNN and Vi

Value iteration algorithm for MDPs can be represented in a network
form — value iteration network (VIN)'.

* GNN well aligned with value iteration

Value lteration

fort=1,..,d
for v € V (in parallel)

V(v,¥) = m;lxzup(ula,v J(R(w,a,u) +V(u,f—1))

Graph Neural Network

forlayers ¢ =1,..,d
for v € V (in parallel)

ht = UP({MLP(hL % ke L {p(ula,v),R(v,a,u)})}, 5 1)

1 Tamar, Aviv, Yi Wu, Garrett Thomas, Sergey Levine, and Pieter Abbeel. "Value iteration networks.” NeurlPS 2016



Example: robot navigation
using a map, using VIN’

* The transition p(u|a,v ) and
reward R (v, a, u) function
may also need to be learned,
instead of being provided.

» Message passing structure
suggests

* represent transition and
reward separately, learned as  Value lteration

i i fort=1,..,d
function of Image for v € IV (in parallel)
* Use as input to same function Vv, ) = mgxzup(um,v)(R(v, a,u) +Vu,f—1))
at all states

1 Karkus, Peter, David Hsu, and Wee Sun Lee. "QMDP-net: Deep learning for planning under partial observability."
NeurlPS 2017



GNN well aligned with value iteration:
may work well here

VIN has stronger inductive bias: encode
value iteration equations directly

 Action heads: for each action, take
weighted sum from neighbours

* Then max over actions

GNN potentially more flexible: also
aligned other similar algorithms,
particularly dynamic programming
algorithms
« May work better if MDP assumption is not
accurate

» Optimization may be easier for some
types of architectures’

! Lee, Lisa, Emilio Parisotto, Devendra Singh Chaplot, Eric Xing, and Ruslan Salakhutdinov. "Gated path
planning networks.” ICML 2018.



Alignment of GNN and Graphical Model
Algorithms Mean field

repeat T iterations
for each variable j compute (serlally or in parallel)

Mgj (x )= xa\x LEN(a) i#j CIl(x ) In l/)a(xa) fora € N(]) in parallel

0505) = 20 (Zaeny ey ()

When all potential functions are pairwise ¥, (x,) = ¥; ;(x;, x;), then
mg;(x;) is a function of only q; (x;).
» Can send message directly from variable to variable without combining
the messages at factor nodes

» Can interpret node embedding as feature representation of belief and
learn a mapping from one belief to another as a message function’
» GNN algorithmically well aligned with mean field for pairwise potential functions
« Similarly well aligned with loopy belief propagation for pairwise potential

1 Dai, Hanjun, Bo Dai, and Le Song. "Discriminative embeddings of latent variable models for structured data." ICML 2016.



What about with higher order potentials o
Y,(x,) where x, consists of n, variables? /O\
* In tabular representation, size of y,(x,)
grows exponentially with n,, so even loopy A
belief propagation is not efficient
» But if Y, (x,) is low-ranked tensor, then loopy X, X, X3
belief propagation can be efficiently
implemented?2

* Represent y,(x,) as a tensor decomposition (CP
decomposition), where k, is the rank C

1/}a(xa) = Zfﬁl Wcil,l (xa,l) Wcil,Z (xa,z)---Wcil,na (xa,na)
 Factor graph neural network (FGNN), which
passes messages on a factor graph is well
aligned with this

! Dupty, Mohammed Haroon, and Wee Sun Lee. "Neuralizing Efficient Higher-order Belief Propagation." arXiv
preprint arXiv:2010.09283 (2020)
2 Zhang, Zhen, Fan Wu, and Wee Sun Lee. "Factor graph neural network." NeurlPS 2020.



ma() = % o) | | nyc)

Xa\Xi JEN(a\I
Ka
— '
Implement message functions = Zx \X.z{)_ 1_[ Wa,j (%) 1_[ n;j(x;)
nl-a(xi) = 1_[ mci(xi) ka ' - JEN(a) ]EN(a)\l
cEN(i)\a 4
M (x;) = xZX Ya(xg) 1_[ n;(x;) - Z{,= al (xl) z 1_[ Wa] (x])nl] (x])
a\Xi JEN(a)\i Xq\X_l JEN(a)\i

using

lpa(xa):Z 1_[ wE (%) =ZZ al(xl) 1_[ ZWa] (xpng(x;)

b= ]EN(a) JEN(a)\i xj



Nia (%) = [cen(ina Mei(xi)

Mg (x;) = z:ilwcf,i (x;) 1_[ 2 we i () (x))

JEN(a)\i xj

In matrix notation Matrix notation
My = Wy (@jEN(a)\i Wajnja)  mg; vector of length n;
* n;, vector of length n;
- w(; vector of length n;
» W ,; matrix of k,rows where each
: row is (wg )T
Mg :®jEN(a)\i Wajnja * (O element-wise multiplication
— T .../
Nig =Ocencipna Weile
Matrix vector multiplication
followed by product aggregation.

Nia =Ocen(i)\a Mei

To make factor and variable
messages symmetric



Factor graph provides an easy way to
specify dependencies, even higher
order ones.

Loopy belief propagation can be
approximated with the following
message passing equations
Mai =Ojenani Wajlja
g =Ocencina Weilei
Optimizes Bethe free energy if it
converges.

Uses low rank approximation
for potential functions.
Increasing number of rows
of W ,; increases rank

of tensor decomposition
approximation.



Neuralizing Loopy Belief Propagation

Alignment shows that a neural network with small number of
parameters can approximate an algorithm, smaller sample
complexity in learning: analysis.

Can also use the ideas in design.

Neuralizing the algorithm

« Start with the network representing the algorithm to capture the inductive
bias.

» Modify the algorithm, e.g. add computational elements to enhance

approximation capability, while mostly maintaining the structure to keep
the inductive bias.



 Start with an algorithm in network form, e.g.
Mai =Ojenani Wajlja
Nig =OQcengina Weilei
» Add network elements to potentially make the network

more powerful — enlarge the class of algorithms that can be A
learned, e.g. X
Mg = MLP(Ojenani Wajja) B
Nig = MLP(Qcen(ina Wrime:) g c
* |t is usually simpler to keep messages only on nodes X4

instead of on edges, simplify while keeping message

passing structure. Can also change aggregrator, e.g. to

sum, max, etc. Works well in practice
mg = MLP(AGGjen)W ajny) Message passing neural net on
n; = MLP(AGGoennyW eyme) } factor graph



Attention Network



Distributed Representation of Graphs and
Matrices

A graph can be represented using an adjacency matrix
A matrix 4, in turn can be factorized A = UV?

In factorized form, uj v; = A;;
» Entry (i,j) of matrix A is the inner product of row i of matrix U with row j of matrix V

* Node i of graph has an embeddings u;, v; such that the value of edge (i.j) can be
computed as u; v;
 Distributed representation of graph — information distributed to the nodes

A=UVT Aij — ulij = 2 Uik Vjk With distributed
representation, using a

11 Q12 Q13 S FICE 2 VR PN RV subset of embeddings u;, v;
a21 d23 =l Voo ] gives representation of

(1 Oay a e U] 12 V32
31 32 33 31 32 subgraph!



Attention Network

Using matrix factorization, we can show
that the transformer-type attention

network is well aligned with value iteration
for MDP

In the attention network, we have a set of
nodes, each of which has an embedding
as input, and the same operations
(implemented with a network) are applied
at each node in a layer.

gx

Add

) )

A

Feedforward

ﬁ

Add

A

([ Multi-Head )

Attention

e




MUlti-head attention Output of Multi-Head Attention

A
Let embedding at node i be x; Projection

« Each node has K attention heads 4

« Each attention head has weight B Acros; S Y
matrices: query weights W, used to ;
compute query g; = Wox;, key Weighted Average
weights Wy used to compute key A A 1
k; = Wyx; and value weights W, Softmax
used to compute v; = Wy x;. CT — Tk *

« Compute a;; = q; k; with all other /U7<”\
nodes j. Compute probability vector |
p;; for all j using the softmax function k) ki = ”@ Vi ?WV’CL' SWQ’C"
pij = e®l},e%. The output of the T
head is a weighted average of all the X; X;

values Z] va]



Output of multi-head attention

» Concatenate outputs of K attention heads
» Project back to vector of the same length

» Passed to a feedforward network through a
residual operation (added to x;)

A

g

Add

1)

A

[ Feedforward ]

)

A
Multi-Head
Attention
AL A

Output of Multi-Head Attention

)

A
Projection
A
Concatenate Across K Heads
A A
Weighted Average
A A A
Softmax
A A
aij = q; k;

g ki =Wgx; v;=Wyx; @ = Wox;




Alignment of Attention Network

with Value Iteration

Constructing input x;

» Use matrix factorization to get a
distributed representation of the
log of each transition matrix
L, = U,V for each action a where
Lq[s,s'] = logP(s'|s, a).

 Construct input for node i, x;, by
stacking up K + 1 copies of initial
value v; followed by embeddings of
transition matrices

| Reward for each

action for state i

Embeddings of
transition matrices
for each action

for state i

K + 1 copies of
initial value v;




Constructing input x; : | Reward for each
» Compute expected reward Ri| _ action for state i
R, = E[R(s,a,s")] for each action of [vg;| -
the K actions. Ui Embeddings of
 Place expected reward R,; for each 5 | transition m.atrlces
action a into a single vector input and | V1i for each action
Uqj for state i

concatenate to the earlier input

vector. : K + 1 copies of
initial value v;




At each layer of value iteration:

for each action a of each state s (in parallel)
Collect p(s'|a, s )(R(s,a,s") + V(s")) fromall s'to a atsif p(s’|a,s) non-zero
Sum all messages
for each node s (in parallel)
Collect message from its corresponding actions a
Take the maximum of the messages

Need to extract out u,;, v,; to compute
p(jla, i) = exp(ugiva;)
« Setting W, = [0, Iy, 0] where I, is a k by k
identity matrix at the appropriate columns will
extract u,; = Wyx; as query. 00 0

0

« Similarly can construct Wy to extract v,; as g 3

key, allowing softmax of inner product u/;v,; to
correctly compute transition probabilities. 00 O

« Set W, to extract out the value component
from x;

With this construction, output of head a is
Oq = ij(jla: ) Vj

0

= Ugi



At each layer of value iteration:
for each action a of each state s (in parallel)

Collect p(s'|a, s )(R(s,a,s") + V(s")) fromall s'to a atsif p(s’|a,s) non-zero

Sum all messages
for each node s (in parallel)

Collect message from its corresponding actions a

Take the maximum of the messages

Output of head a is
= 2 p(la, i) v
J

Concatenate as [0;; ... 0x;]T and
add to first K components of x; to
form input to feedforward
network,

I

Add

1)

[ Feedforward ]

mdd

A

Multi-Head
| Attention

J

At £

7




At each layer of value iteration:
for each action a of each state s (in parallel)

Collect p(s'|a, s )(R(s,a,s") + V(s")) fromall s'to a atsif p(s’|a,s) non-zero

Sum all messages
for each node s (in parallel)

Collect message from its corresponding actions a

Take the maximum of the messages

Feedforward network:
» Subtract v_i from v; + o,; to get o,;
« Compute v; = max{R,;+0,;}

a

» Construct output so that adding back
the mput of the feedforward network
gets v;in the first K + 1 positions and
the orlglnal MDP parameters in the
remaining posmons
output the value v; — (vl + 04;) @S
first K elements and v, — v; as the
K + 1st element,

-~

Add

1)

[ Feedforward

mdd

A

Multi-Head
| Attention

J

At £

7




Learning



Backpropagation and Recurrent
Backpropagation

All methods discussed are message passing methods on a graph

* Messages are constructed using operations such as addition,
multiplication, max, exponentiation, etc.

« Can be represented using network of computational elements
« Usually same network at each graph node

Each iteration of message passing forms a layer

Putting together layers form a deep network
» Different layers can have different parameters, additional flexibility

With appropriate loss functions, can learn using gradient descent if all
network elements are differentiable: backpropagation



If different layers all have the same parameters, we have a recurrent
neural network.

For some recurrent networks, the inputs the same at each iteration and
we are aiming for solution at convergence

« Loopy belief propagation

 Value iteration for discounted MDP

« Some graph neural networks'

« Some tranformer architectures?

Recurrent backpropagation and other optimization methods based on
implicit functions can be used?

 Constant memory usage

1 Scarselli, Franco, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini. "The graph
neural network model." IEEE Transactions on Neural Networks, 2008.

2 Bai, Shaojie, J. Zico Kolter, and Vladlen Koltun. "Deep equilibrium models." NeurIPS 2019

3 Zico Kolter, David Duvenaud, and Matt Johnson, “Deep Implicit Layers - Neural ODEs, Deep Equilibirum Models,
and Beyond.” NeurlPS 2020 Tutorial http://implicit-layers-tutorial.org/



http://implicit-layers-tutorial.org/

Summary



Message Passing in Machine Learning

We viewed some “classic” message passing algorithms in machine learning
through variational principles

» Loopy belief propagation

* Mean field

* Value iteration

What optimization problems are they solving?

We relate graph neural networks and attention networks to the “classic”
message passing algorithms
 Algorithmic alignment (analysis): Can they simulate those algorithms using a small
network?

* Neuralizing algorithms (design): Can we enhance those algorithms into more
powerful neural versions



References’

» David Mackay’s Error Correcting Code demo
http://www.inference.org.uk/mackay/codes/qifs/

» Zheng, Shuai, Sadeep Jayasumana, Bernardino Romera-Paredes, Vibhav
Vineet, Zhizhong Su, Dalong Du, Chang Huang, and Philip HS Torr.
"Conditional random fields as recurrent neural networks." In Proceedings
81E)t1he IEEE international conference on computer vision, pp. 1529-1537.

Gl

* Yedidia, Jonathan S., William T. Freeman, and Yair Weiss. "Constructing
free-energy approximations and generalized belief propagation
8!39102rithms." IEEE Transactions on information theory 51.7 (2005): 2282-

» Wainwright, Martin J., and Michael Irwin Jordan. Graphical models,
exponential families, and variational inference. Now Publishers Inc, 2008.

1 This list contains only references referred to within the slides and not the many other works related to the
material in the tutorial.


http://www.inference.org.uk/mackay/codes/gifs/

. hBA$r§XV4%ecision Process (figure) by waldoalvarez - Own work, CC
https://commons.wikimedia.org/w/index.php?curid=59364518

» Gilmer, Justin, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals,
and George E. Dahl. "Neural message passing for quantum
chemistry." In International conference on machine learning, pp. 1263-
1272. PMLR, 2017.

* Loukas, Andreas. "What graph neural networks cannot learn: depth vs
width.” ICLR 2020

» Xu, Keyulu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. "How
powerful are graph neural networks?" ICLR 2019



https://commons.wikimedia.org/w/index.php?curid=59364518

* Xu, Keyulu, Jingling Li, Mozhi Zhang, Simon S. Du, Ken-ichi
Kawarabayashi, and Stefanie Jegelka. "What can neural networks reason
about?.” ICLR 2020

» Skeletal formula of paracetamol by Benjah-bmm27 is in the public domain,
https://en.wikipedia.org/wiki/Paracetamol#/media/File:Paracetamol-
skeletal.svqg

 Ball and stick model of paracetamol by Ben Mills is in the public domain,
https://en.wikipedia.org/wiki/Paracetamol#/media/File:Paracetamol-from-
xtal-3D-balls.png

» Tamar, Aviv, Yi Wu, Garrett Thomas, Sergey Levine, and Pieter Abbeel.
"Value iteration networks.” NeurlPS 2016.

 Lee, Lisa, Emilio Parisotto, Devendra Singh Chaplot, Eric Xing, and
Ruslan Salakhutdinov. "Gated path planning networks.” ICML 2018.



https://commons.wikimedia.org/wiki/User:Benjah-bmm27
https://en.wikipedia.org/wiki/Paracetamol
https://en.wikipedia.org/wiki/Paracetamol

» Karkus, Peter, David Hsu, and Wee Sun Lee. "QMDP-net: Deep
learning for planning under partial observability." NeurlPS 2017.

 Dai, Hanjun, Bo Dai, and Le Song. "Discriminative embeddings of
latent variable models for structured data." ICML 2016.

* Dupty, Mohammed Haroon, and Wee Sun Lee. "Neuralizing Efficient
Higher-order Belief Propagation." arXiv preprint
arXiv:2010.09283 (2020).

» Zhang, Zhen, Fan Wu, and Wee Sun Lee. "Factor graph neural
network." NeurlPS 2020.



 Scarselli, Franco, Marco Gori, Ah Chung Tsoi, Markus
Hagenbuchner, and Gabriele Monfardini. "The graph neural
network model." IEEE Transactions on Neural Networks 20, no.
1 (2008): 61-80.

 Bai, Shaojie, J. Zico Kolter, and Vladlen Koltun. "Deep
equilibrium models." NeurlPS 2019.

» Zico Kolter, David Duvenaud, and Matt Johnson, “Deep Implicit
Layers - Neural ODEs, Deep Equilibirum Models, and Beyond.”
NeurlPS 2020 Tutorial http://implicit-layers-tutorial.org/



http://implicit-layers-tutorial.org/

Appendix



Correctness of Belief Propagation
on Trees Mg (x;) = 1_[ mei (X;)

cEN(i)\a

maG) = 5 waGa) | | mic) o

Xa\Xi JEN(a)\i

bi(xp & 1_[ Mg (x;)

a€en (i)

Assume T; is the subtree along edge
(a,i), rooted at x; and message m; (x;) is sent
from a to i.

After k iterations of message passing, the
message correctly marginalizes away other
variables in the subtree

Mg (x;) = ZxIET \X; HaET Ya(xg)

where k is the height of the subtree.




Correctness
Init all messages to all-one vectors.

Then:
me; (x;) = z Z Z z l/)a(xi,xj:xk)llib(...) mg;(x;) = Z z l/)a(xi:xj:xk
Xj X X| X.. Xj Xk
Assume marginalization correctly
X done for subtrees of height < k
l . .. Compute
a * Push summation inside product, a
h at mb](x])
can group at subtrees depth 2 instead
X X below a because of tree structure O : Xy
* By inductive hypothesis,
c - marginalization correct at depth 2 b EL m
o000 . 000

\ below \
Cixl \ So after k iterations of message passing, Céxl \

marginalization at height k correct




Mean Field Update Derivation

In mea_n ﬂe!d _ Consider the dependence on a single variable g;(x;) with all other
approximation, we find  variables fixed

q that minimizes the N N N
variational free energy F(q) = Zx 1_[ qi(x;) E(x) + zx 1_[ q;(x;) In 1_[ q; (x;)
i=1 i=1 i=1
N

F(Q) =2xq(x)E(x) + =Z qj(xj)z Hqi(xi)E(x)+Z qj(xj)lnqj(xj)+const
Zx C[(X) In q(x) o ARS] T Xj

J

1
: : m Z qj(xj) In———=+ const + Z qj(xj) Inq;(x;) + const
when g is restricted to a xj pj(x) o

factored form , 1 -
where p}(x;) = —7€xp | — Z 1_[ q; (x;) E(x)
(x) = TTiL1 qi(x) : T e
dmF = 1li=1q9i(X{). = KL(CIj”p],') + const
which is minimized at q;(x;) = p;(x;). .



Variational Free Energy for Trees

We can write a tree distribution as
Ha Qa(xa) Hi qi(xi)
[la HieN(a) qi(xi)

To see this, we can write a tree distribution as

409 | | 4a@alpatxo))

where x,.is the root, and pa(x,) is the parent
variable for factor a in the tree

We write
qa(xq)

Tpa(xa)

Each variable appears as a parent d — 1 times,
where d is the degree of the variable node,
except the root which appears d times.

Ga(Xalpa(xy)) =

X1

B A
X2 X4 \CD X3
Y,

As q,-(x,) also appears on the numerator, we
can write the distribution as

[1aqa(xq)
[1; qi(xp??
Multiplying the numerator and denominator by
[1; 9;(x;) and observing that L
[1a HieN(a) qi(x;) = II; q;(x;)” gives the
required expression




Substituting

Q(X) _ Ha CIa(xa) Hi Qi(xi)
[la HiEN(a) qi (x;)
into
F(@) =) q@E@®+) @@
we get
F(q)
- . da(xs)
= - Zl D Ga(xa) Inga(x) + Zl )., Gal)n Mo G

+ i zx'qi(xi) Inq;(x;)
i=1



Belief Propagation as Stationary
Point of Bethe Free Energy

Consider optimizing Bethe free energy subject to
constraints described. We form the Lagrangian

L = Fgetpe + z Va Z a (xa) + Z VL Z ql(xl) Fpetne(q) = (1\]/1Bethe (q) — Hpetne (q)

Y N()z TG laae) — > qa(xa) UBethem)=—;Zxaqa<xa)1nwa<xa)

HBethe
Differentiating with respect to g;(x;) and settlng to0

qa(X,)
0 =gt +1+1nql(x) ]/l+2 al(xi) :_sz qa(xa)lnl_[- N( )CI'(X')
=1 a IEN(a) 1L\

a€eNn(i)

qi(x:) o exp (— Zaew m-(xi)) = ]_[aEN(i)mamxi) - i D G Ingi(x)

where d; is the degree of node and m;(x;) =
exp(—Aq;(x;))




Consider optimizing Bethe free energy subject to constraints

described
L = Fgetne +Zya 1 _ZCIa(xa) +z vill qu(xl)]
+ Z Z Z Aal(xl) ql (xl) z CIa(xa) FBethe(Q) = UBethe(CI) . HBethe(Q)
a€eN(i) X Xq\Xi M
Differentiating with respect to g,(x,) and setting to 0 Upethe(q) = — z z qa(x,) Inhg (x4)
0 =—Inyg(xs) + 1 +1nq,(xq) a=1"

1 1_[ ( ) z 1 ( ) HBeth;I
— In A X;) — — (s
ieN(a)ql G ieN@@) i _ZZ 0 (x)In Ga(xa)

= —Iny,(x,)+1Inq,(x,) + const e [ienca) 9 (x)
N
+Z Z Aqi(xi —z Aai (X
iEN(a) ~=~da€eN (i) ai (%) iEN(a) ai (%) _zzx_ql'(xi)ln%'(xi)
=il ‘
Ga(*a) % Pa(xa) exp (— > Abim)) |
IEN(a) beN(i)\a Previously:

= ¥alxa) Hiezvca) 1_[ penna (1) (%) o< exp <_ Zaew<i>’1“" OCL'))

where my; (x;) = exp(—1p;(x;))



W% ot

b, o XCHTD WACH mﬁ(x) :
l;!)m z 2o IL 1T Previously:

qi(x;) = nbEN(i)mbi(xi)
Ga(xq) = Pga(xg) l_[jeN(a) I1 beN(j)\a Mbj (xj)

m_(x)= 2 f,(x,) my_,;(X;)
Z Je 11 beg[) [Fig from Yedidia et. al. 2005]

For 2., \i 9a(xg) to be consistent with q;(x;) = [lpeniy mpi (x),
we get ﬂwe belief propagation equation

maC) =) yad| | || om0
Xa\i JEN (a)\i beN(j)\a

Stationary points of the Bethe free energy are fixed points of loopy belief
propagation updates .



Bellman Update Contraction

We show that Bellman update is a contraction
|BV, — BV, || < yl[Vy — VLl

First we show that for any two functions f(a) and g(a)
jmax f(a) — max g(a)| < max|f(a) — g(a)|
a
To see this, assume consider the case where max f(a) = max g(a). Then
a a
| max f(a) — max g(a)| = max f(a) — max g(a)
a a a a
= f(a") —maxg(a)
< f(a") —g(a®)
< max |f (@) — g(a)|
where a* = argmax, f(a). The case where max g(a) = max f(a) is similar.
a a



Now, for any state s
|BV1(s) — BV, (s)|

max, {z P(s'ls,a)(R(s,a,s") + yVi(s")

Vv~

— max, {Z P(s'ls,a)(R(s,a,s") +yV, (S'))]

< max,

Z P(s’'|s, a)(R(S, a,s') + yVl(s’)) - Z P(s’|s, a)(R(S, a,s') + sz(s’))

= ymax,

D PEls (V) = Va(s)

=V

> P(s'ls, a) (4G = Vo(s))

where we have use |max f(a) — max g(a)| < max |f (a) — g(a)].
a a



Finally, we show contraction
|BVy — BV, || = m;?lX |BV1(s) — BV,(s)|

< Yy max
S

Eﬁ@%ﬂmﬂwo—nw»|

< y max|V; (s) = V(5)|
= ¥lIV, = Vel



