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Main Ideas

• Physics has informed many inductive biases in deep learning, both 
explicitly and implicitly 

• Success of these often due to fact that deep learning seeks models of 
the physical world; using physics as a prior can directly or indirectly 
benefit these models. 

• Formalizing these in a physics language often leads to new insights
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First, some history
• An early physics-motivated inductive bias: Hopfield networks 

• Based on Ising Model

System State:

In higher dimension - additional neighbors!



Ising Model

Energ\:
neighbors

or

or

iV

iV cells

iV

iV

Energ\ Energy Constant

System State:



Ising Model

Energ\:
neighbors

or

or

iV

iV cells

iV

iV

Energ\ Energy Constant

System State:

• To simulate (Monte Carlo)



Ising Model

Energ\:
neighbors

or

or

iV

iV cells

iV

iV

Energ\ Energy Constant

System State:

• To simulate (Monte Carlo)

• Pick random grid cell.



Ising Model

Energ\:
neighbors

or

or

iV

iV cells

iV

iV

Energ\ Energy Constant

System State:

• To simulate (Monte Carlo)

• Pick random grid cell.

• Swap color.



Ising Model

Energ\:
neighbors

or

or

iV

iV cells

iV

iV

Energ\ Energy Constant

System State:

• To simulate (Monte Carlo)

• Pick random grid cell.

• Swap color.

• If energy decreases  keep change⇒



Ising Model

Energ\:
neighbors

or

or

iV

iV cells

iV

iV

Energ\ Energy Constant

System State:

• To simulate (Monte Carlo)

• Pick random grid cell.

• Swap color.

• If energy decreases  keep change⇒

• If energy increases  keep change with ⇒ p = exp( − (Enew − Eold)/Temperature)
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• Simple system; but can be used to 
model many phenomena:

• Ferromagnets, chemical equilibrium, 
crystals, ice, etc.

• Non-physics: social networks, human 
memory (Hopfield network!), etc.

(Alex Pettitt)

2D (4 neighbors for every cell)
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Hopfield Networks & Boltzmann Machines

• Applying Ising Model to Neural Networks

• Originally proposed by Little (1974); then Hopfield (1982), generalized to continuous variables in Hopfield (1984)

• Modern developments include:

• Hopfield Networks is All You Need (2020), Hubert Ramsauer, et al., successfully applies a variant of modern 
Hopfield Networks to classification, NLP, and drug design problems, with great performance.

“Neighbor”  ”Connection” 
One can think about updating 

neurons as if they were cells in an 
Ising Model!

⇒

(diagram by Chiara Marullo)
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(A Small Selection of) 

Physics-Informed Inductive Biases 
in the modern era

Categories: 

1.Energy 
2.Geometry 
3.Differential Equations
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Why Inductive Biases?

• To beat the curse of dimensionality, inductive biases define a prior on the 
space of learnable functions

• As a simple example, limiting the L2 norm of neural network’s weights 
places an upper bound on its Lipschitz constant.

• This is a prior which favors smooth functions; which is assumed for 
nearly every machine learning problem.

• However, this prior is not enough. Physically-motivated inductive biases 
define additional priors on this function space.
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• Formalism similarly based on framework of 

statistical physics

• Parameterize energy function

• Seek to minimize energy over positive pairs 
of data, maximize energy over negative 
pairs of data.

• Early work includes “Contrastive 
Divergence” by Hinton (2000); formalized 
into energy-based framework by LeCun

• Many ML problems can be easily rephrased in 
this unified energy-based framework!

LeCun et al., (2006)

Energy surface
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Lagrangian Neural Networks
• Generalized energy-conserving model: 

the LNN (Cranmer et al., 2020)

• Precursor work: DeLaN (Lutter et al., 2019).

• Issue with HNNs and DeLaN: require 
known functional form of kinetic energy

··q = (∇ ·q ∇⊤·q L)−1(∇qL − (∇q ∇⊤·q L) ·q)

Second order gradient  matrix inverse⇒

Learned Function

HNN LNN

Without known 
kinetic energy:
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• Long been known that symmetries are important for machine 
learning. Much of this is rooted in fact that ML implicitly and 
explicitly models the physical world: and so the universe’s 
symmetries make for good inductive biases.

• Convolutional Neural Networks are translationally equivariant

• Invariance: , a group.h(x) = h(g ∘ x)∀g ∈ G

• Equivariance: .g ∘ f(x) = f(g ∘ x)∀g ∈ G

• The universe obeys translational symmetry. This is equivalent 
to momentum conservation.

• This symmetry is intuitive because we have been living with 
these physical laws. Perhaps it would not be as intuitive if the 
laws of physics changed at every point of space!
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Group Equivariant CNN

[ f ⋆ ψ](g) = ∑
y∈ℤ2

∑
k

fk(y)ψk(g−1y)

Discrete group

Can have this be a rotation group!

(Note that rotational symmetry is 
also a symmetry of the universe)
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Graph Nets

• The Universe (mostly) shares this permutation symmetry as well; and many laws are equivariant to 
exchange of particles.

• Graph Network inductive biases are loosely based on classical mechanics
• Another example of a formal framework from physics which can be applied to learning!

(Can even exploit this relation to classical mechanics, and distill force laws - see M Cranmer et al., 2020)

See Battaglia et al., 2018 for a good review on GNNs



For the ultimate book on geometry in deep 
learning, see geometricdeeplearning.com 

(Bronstein, Bruna, Cohen, Veličković)

http://geometricdeeplearning.com
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Differential Equations - Neural ODEs
• Differential equations first created to model 

the rate of change in physical systems 
(Newton/Leibniz)

• In a regular Neural ODE, one optimizes a 
learned function  such to optimize a 
predictive model:

f(y, t; θ)

y(t) = y(0) + ∫
t

0
f(y, τ; θ)dτ

• With the obvious applicability to learning time 
series, can be applied to learning for general 
problems

Chen et al., 2018
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Differential Equations - PINN
• Learn physical variable: , given some observations.u(x, t; θ)

• Explicitly assume  is governed by a specific PDE.u

• Regularize the solution  such that is satisfies both the PDE and data.u

• Unlike LNN and HNN, this is a soft inductive bias.

See Karniadakis, et al., (2021) 
for a good review.

Truth:

Compute error in PDE
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Soft vs Hard
• Soft: it is difficult for the model to deviate from the inductive bias.

• Data augmentation is a type of soft inductive bias.

• Hard: it is impossible for the model to deviate.

• e.g., a CNN cannot learn absolute positions

• For example, an LNN is a hard constraint on the dynamics, whereas a PINN is 
a soft constraint.

• For some inductive biases, hard constraints may be intractable to create. Soft 
constraints are useful when a symmetry might be slightly violated.
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Explicit vs Implicit

• Explicit: an inductive bias created to define a particular functional prior.

• Implicit: an inductive bias is present which was not intended.

• e.g., large learning rates and small batch sizes define an implicit 
regularization term (e.g., Sam Smith et al., 2021 and references therein)

• Generally, it seems that making an inductive bias explicit in a formal 
framework, such as physics, leads to new insights, and allows one to use 
existing methods. Also allows one to control it.
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General vs Application-Specific

• General: an inductive bias that can be used for many different problems

• Application-specific: an inductive bias created for a particular physical 
problem

• For example, a PINN’s inductive bias is the ODE describing the 
underlying data; whereas some Neural ODE regularizations are very 
general (e.g., J Kelly et al., 2020 and C Finlay et al., 2020)
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Summary
• Many successful inductive biases in deep learning are explicitly or 

implicitly informed by physics. Additional insights can be gained when 
making this connection explicit!

• One should directly consider inductive biases, and what choices to make, 
given the following categories:

• Explicit vs Implicit

• General vs Application-Specific

• Hard vs Soft



Code tutorial

https://astroautomata.com/inductive_biases_tutorial.html


