
Physics-Informed Inductive Biases
in Deep Learning

Miles Cranmer (Princeton)
Shirley Ho (Flatiron, NYU, CMU, Princeton)

Physics-Informed Inductive Biases
in Deep Learning

Miles Cranmer (Princeton)
Shirley Ho (Flatiron, NYU, CMU, Princeton)

Main Ideas

• Physics has informed many inductive biases in deep learning, both
explicitly and implicitly

• Success of these often due to fact that deep learning seeks models of
the physical world; using physics as a prior can directly or indirectly
benefit these models.

• Formalizing these in a physics language often leads to new insights

First, some history
• An early physics-motivated inductive bias: Hopfield networks

• Based on Ising Model

System State:

First, some history
• An early physics-motivated inductive bias: Hopfield networks

• Based on Ising Model

System State:

p(State) ∝ exp(−Energy/Temperature)

First, some history
• An early physics-motivated inductive bias: Hopfield networks

• Based on Ising Model

System State:

p(State) ∝ exp(−Energy/Temperature)

First, some history
• An early physics-motivated inductive bias: Hopfield networks

• Based on Ising Model

System State:

In higher dimension - additional neighbors!

Ising Model

Energ\:
neighbors

or

or

iV

iV cells

iV

iV

Energ\ Energy Constant

System State:

Ising Model

Energ\:
neighbors

or

or

iV

iV cells

iV

iV

Energ\ Energy Constant

System State:

• To simulate (Monte Carlo)

Ising Model

Energ\:
neighbors

or

or

iV

iV cells

iV

iV

Energ\ Energy Constant

System State:

• To simulate (Monte Carlo)

• Pick random grid cell.

Ising Model

Energ\:
neighbors

or

or

iV

iV cells

iV

iV

Energ\ Energy Constant

System State:

• To simulate (Monte Carlo)

• Pick random grid cell.

• Swap color.

Ising Model

Energ\:
neighbors

or

or

iV

iV cells

iV

iV

Energ\ Energy Constant

System State:

• To simulate (Monte Carlo)

• Pick random grid cell.

• Swap color.

• If energy decreases keep change⇒

Ising Model

Energ\:
neighbors

or

or

iV

iV cells

iV

iV

Energ\ Energy Constant

System State:

• To simulate (Monte Carlo)

• Pick random grid cell.

• Swap color.

• If energy decreases keep change⇒

• If energy increases keep change with ⇒ p = exp(− (Enew − Eold)/Temperature)

(Alex Pettitt)

2D (4 neighbors for every cell)

(Alex Pettitt)

2D (4 neighbors for every cell)

• Simple system; but can be used to
model many phenomena:

(Alex Pettitt)

2D (4 neighbors for every cell)

• Simple system; but can be used to
model many phenomena:

• Ferromagnets, chemical equilibrium,
crystals, ice, etc.

(Alex Pettitt)

2D (4 neighbors for every cell)

• Simple system; but can be used to
model many phenomena:

• Ferromagnets, chemical equilibrium,
crystals, ice, etc.

• Non-physics: social networks, human
memory (Hopfield network!), etc.

(Alex Pettitt)

2D (4 neighbors for every cell)

Hopfield Networks & Boltzmann Machines

“Neighbor” ”Connection”
One can think about updating

neurons as if they were cells in an
Ising Model!

⇒

Hopfield Networks & Boltzmann Machines

“Neighbor” ”Connection”
One can think about updating

neurons as if they were cells in an
Ising Model!

⇒

Hopfield Networks & Boltzmann Machines

“Neighbor” ”Connection”
One can think about updating

neurons as if they were cells in an
Ising Model!

⇒

(diagram by Chiara Marullo)

Hopfield Networks & Boltzmann Machines

• Applying Ising Model to Neural Networks

“Neighbor” ”Connection”
One can think about updating

neurons as if they were cells in an
Ising Model!

⇒

(diagram by Chiara Marullo)

Hopfield Networks & Boltzmann Machines

• Applying Ising Model to Neural Networks

• Originally proposed by Little (1974); then Hopfield (1982), generalized to continuous variables in Hopfield (1984)

“Neighbor” ”Connection”
One can think about updating

neurons as if they were cells in an
Ising Model!

⇒

(diagram by Chiara Marullo)

Hopfield Networks & Boltzmann Machines

• Applying Ising Model to Neural Networks

• Originally proposed by Little (1974); then Hopfield (1982), generalized to continuous variables in Hopfield (1984)

• Modern developments include:

“Neighbor” ”Connection”
One can think about updating

neurons as if they were cells in an
Ising Model!

⇒

(diagram by Chiara Marullo)

Hopfield Networks & Boltzmann Machines

• Applying Ising Model to Neural Networks

• Originally proposed by Little (1974); then Hopfield (1982), generalized to continuous variables in Hopfield (1984)

• Modern developments include:

• Hopfield Networks is All You Need (2020), Hubert Ramsauer, et al., successfully applies a variant of modern
Hopfield Networks to classification, NLP, and drug design problems, with great performance.

“Neighbor” ”Connection”
One can think about updating

neurons as if they were cells in an
Ising Model!

⇒

(diagram by Chiara Marullo)

(A Small Selection of)

Physics-Informed Inductive Biases
in the modern era

(A Small Selection of)

Physics-Informed Inductive Biases
in the modern era

Categories:

1.Energy
2.Geometry
3.Differential Equations

Why Inductive Biases?

Why Inductive Biases?

• To beat the curse of dimensionality, inductive biases define a prior on the
space of learnable functions

Why Inductive Biases?

• To beat the curse of dimensionality, inductive biases define a prior on the
space of learnable functions

• As a simple example, limiting the L2 norm of neural network’s weights
places an upper bound on its Lipschitz constant.

Why Inductive Biases?

• To beat the curse of dimensionality, inductive biases define a prior on the
space of learnable functions

• As a simple example, limiting the L2 norm of neural network’s weights
places an upper bound on its Lipschitz constant.

• This is a prior which favors smooth functions; which is assumed for
nearly every machine learning problem.

Why Inductive Biases?

• To beat the curse of dimensionality, inductive biases define a prior on the
space of learnable functions

• As a simple example, limiting the L2 norm of neural network’s weights
places an upper bound on its Lipschitz constant.

• This is a prior which favors smooth functions; which is assumed for
nearly every machine learning problem.

• However, this prior is not enough. Physically-motivated inductive biases
define additional priors on this function space.

 Energy-Based Models (EBMs)

 Energy-Based Models (EBMs)
• Formalism similarly based on framework of

statistical physics

 Energy-Based Models (EBMs)
• Formalism similarly based on framework of

statistical physics

• Parameterize energy function

 Energy-Based Models (EBMs)
• Formalism similarly based on framework of

statistical physics

• Parameterize energy function

• Seek to minimize energy over positive pairs
of data, maximize energy over negative
pairs of data.

 Energy-Based Models (EBMs)
• Formalism similarly based on framework of

statistical physics

• Parameterize energy function

• Seek to minimize energy over positive pairs
of data, maximize energy over negative
pairs of data.

LeCun et al., (2006)

 Energy-Based Models (EBMs)
• Formalism similarly based on framework of

statistical physics

• Parameterize energy function

• Seek to minimize energy over positive pairs
of data, maximize energy over negative
pairs of data.

• Early work includes “Contrastive
Divergence” by Hinton (2000); formalized
into energy-based framework by LeCun

LeCun et al., (2006)

 Energy-Based Models (EBMs)
• Formalism similarly based on framework of

statistical physics

• Parameterize energy function

• Seek to minimize energy over positive pairs
of data, maximize energy over negative
pairs of data.

• Early work includes “Contrastive
Divergence” by Hinton (2000); formalized
into energy-based framework by LeCun

• Many ML problems can be easily rephrased in
this unified energy-based framework!

LeCun et al., (2006)

 Energy-Based Models (EBMs)
• Formalism similarly based on framework of

statistical physics

• Parameterize energy function

• Seek to minimize energy over positive pairs
of data, maximize energy over negative
pairs of data.

• Early work includes “Contrastive
Divergence” by Hinton (2000); formalized
into energy-based framework by LeCun

• Many ML problems can be easily rephrased in
this unified energy-based framework!

LeCun et al., (2006)

Energy surface

Hamiltonian Neural Networks

Hamiltonian Neural Networks
• Greydanus et al., 2019

Hamiltonian Neural Networks
• Greydanus et al., 2019

• Learn energy, and apply Hamilton’s
equations to get dynamical predictions.

Hamiltonian Neural Networks
• Greydanus et al., 2019

• Learn energy, and apply Hamilton’s
equations to get dynamical predictions.

·q =
∂H
∂p

·p = −
∂H
∂q

Hamiltonian Neural Networks
• Greydanus et al., 2019

• Learn energy, and apply Hamilton’s
equations to get dynamical predictions.

·q =
∂H
∂p

·p = −
∂H
∂q

Learned Function

Hamiltonian Neural Networks
• Greydanus et al., 2019

• Learn energy, and apply Hamilton’s
equations to get dynamical predictions.

·q =
∂H
∂p

·p = −
∂H
∂q

Learned Function

Time derivative of position and momentum

Hamiltonian Neural Networks
• Greydanus et al., 2019

• Learn energy, and apply Hamilton’s
equations to get dynamical predictions.

·q =
∂H
∂p

·p = −
∂H
∂q

Learned Function

Time derivative of position and momentum

Hamiltonian Neural Networks
• Greydanus et al., 2019

• Learn energy, and apply Hamilton’s
equations to get dynamical predictions.

• This gives the model explicit and
exact energy conservation

• Can even apply to a latent
representation of an video:

·q =
∂H
∂p

·p = −
∂H
∂q

Learned Function

Time derivative of position and momentum

Hamiltonian Neural Networks
• Greydanus et al., 2019

• Learn energy, and apply Hamilton’s
equations to get dynamical predictions.

• This gives the model explicit and
exact energy conservation

• Can even apply to a latent
representation of an video:

·q =
∂H
∂p

·p = −
∂H
∂q

Learned Function

Time derivative of position and momentum

Lagrangian Neural Networks

Lagrangian Neural Networks
• Generalized energy-conserving model:

the LNN (Cranmer et al., 2020)

Lagrangian Neural Networks
• Generalized energy-conserving model:

the LNN (Cranmer et al., 2020)

• Precursor work: DeLaN (Lutter et al., 2019).

Lagrangian Neural Networks
• Generalized energy-conserving model:

the LNN (Cranmer et al., 2020)

• Precursor work: DeLaN (Lutter et al., 2019).

• Issue with HNNs and DeLaN: require
known functional form of kinetic energy

Lagrangian Neural Networks
• Generalized energy-conserving model:

the LNN (Cranmer et al., 2020)

• Precursor work: DeLaN (Lutter et al., 2019).

• Issue with HNNs and DeLaN: require
known functional form of kinetic energy

Lagrangian Neural Networks
• Generalized energy-conserving model:

the LNN (Cranmer et al., 2020)

• Precursor work: DeLaN (Lutter et al., 2019).

• Issue with HNNs and DeLaN: require
known functional form of kinetic energy

Lagrangian Neural Networks
• Generalized energy-conserving model:

the LNN (Cranmer et al., 2020)

• Precursor work: DeLaN (Lutter et al., 2019).

• Issue with HNNs and DeLaN: require
known functional form of kinetic energy

··q = (∇ ·q ∇⊤·q L)−1(∇qL − (∇q ∇⊤·q L) ·q)

Second order gradient matrix inverse⇒

Learned Function

Lagrangian Neural Networks
• Generalized energy-conserving model:

the LNN (Cranmer et al., 2020)

• Precursor work: DeLaN (Lutter et al., 2019).

• Issue with HNNs and DeLaN: require
known functional form of kinetic energy

··q = (∇ ·q ∇⊤·q L)−1(∇qL − (∇q ∇⊤·q L) ·q)

Second order gradient matrix inverse⇒

Learned Function

Lagrangian Neural Networks
• Generalized energy-conserving model:

the LNN (Cranmer et al., 2020)

• Precursor work: DeLaN (Lutter et al., 2019).

• Issue with HNNs and DeLaN: require
known functional form of kinetic energy

··q = (∇ ·q ∇⊤·q L)−1(∇qL − (∇q ∇⊤·q L) ·q)

Second order gradient matrix inverse⇒

Learned Function

HNN LNN

Without known
kinetic energy:

Hamiltonian Generative Networks

Hamiltonian Generative Networks
• Toth et al., (2019)

Hamiltonian Generative Networks
• Toth et al., (2019)

• Hamiltonian dynamics conserves energy.

Hamiltonian Generative Networks
• Toth et al., (2019)

• Hamiltonian dynamics conserves energy.

• Define probability = energy; then we conserve total probability! Use to define a normalizing flow.

Hamiltonian Generative Networks
• Toth et al., (2019)

• Hamiltonian dynamics conserves energy.

• Define probability = energy; then we conserve total probability! Use to define a normalizing flow.

• Can apply to regular dynamical problems with a probabilistic model:

Hamiltonian Generative Networks
• Toth et al., (2019)

• Hamiltonian dynamics conserves energy.

• Define probability = energy; then we conserve total probability! Use to define a normalizing flow.

• Can apply to regular dynamical problems with a probabilistic model:

Inductive Biases which Specify Geometry

Inductive Biases which Specify Geometry

Inductive Biases which Specify Geometry

• Long been known that symmetries are important for machine
learning. Much of this is rooted in fact that ML implicitly and
explicitly models the physical world: and so the universe’s
symmetries make for good inductive biases.

Inductive Biases which Specify Geometry

• Long been known that symmetries are important for machine
learning. Much of this is rooted in fact that ML implicitly and
explicitly models the physical world: and so the universe’s
symmetries make for good inductive biases.

• Convolutional Neural Networks are translationally equivariant

Inductive Biases which Specify Geometry

• Long been known that symmetries are important for machine
learning. Much of this is rooted in fact that ML implicitly and
explicitly models the physical world: and so the universe’s
symmetries make for good inductive biases.

• Convolutional Neural Networks are translationally equivariant

• Invariance: , a group.h(x) = h(g ∘ x)∀g ∈ G

Inductive Biases which Specify Geometry

• Long been known that symmetries are important for machine
learning. Much of this is rooted in fact that ML implicitly and
explicitly models the physical world: and so the universe’s
symmetries make for good inductive biases.

• Convolutional Neural Networks are translationally equivariant

• Invariance: , a group.h(x) = h(g ∘ x)∀g ∈ G

• Equivariance: .g ∘ f(x) = f(g ∘ x)∀g ∈ G

Inductive Biases which Specify Geometry

• Long been known that symmetries are important for machine
learning. Much of this is rooted in fact that ML implicitly and
explicitly models the physical world: and so the universe’s
symmetries make for good inductive biases.

• Convolutional Neural Networks are translationally equivariant

• Invariance: , a group.h(x) = h(g ∘ x)∀g ∈ G

• Equivariance: .g ∘ f(x) = f(g ∘ x)∀g ∈ G

• The universe obeys translational symmetry. This is equivalent
to momentum conservation.

Inductive Biases which Specify Geometry

• Long been known that symmetries are important for machine
learning. Much of this is rooted in fact that ML implicitly and
explicitly models the physical world: and so the universe’s
symmetries make for good inductive biases.

• Convolutional Neural Networks are translationally equivariant

• Invariance: , a group.h(x) = h(g ∘ x)∀g ∈ G

• Equivariance: .g ∘ f(x) = f(g ∘ x)∀g ∈ G

• The universe obeys translational symmetry. This is equivalent
to momentum conservation.

• This symmetry is intuitive because we have been living with
these physical laws. Perhaps it would not be as intuitive if the
laws of physics changed at every point of space!

Why is it good to formalize this?

Why is it good to formalize this?

• Describing ConvNet’s equivariance
in a formal framework like this lets
you consider other symmetries.

• For example, ConvNets do not by
default have rotational symmetry.

• Taco Cohen & Max Welling (2016)
derived this: the Group
Equivariant-CNN. Makes the CNN
rotationally invariant.

Why is it good to formalize this?

• Describing ConvNet’s equivariance
in a formal framework like this lets
you consider other symmetries.

• For example, ConvNets do not by
default have rotational symmetry.

• Taco Cohen & Max Welling (2016)
derived this: the Group
Equivariant-CNN. Makes the CNN
rotationally invariant.

Generalize a convolution
to any group convolution:

Why is it good to formalize this?

• Describing ConvNet’s equivariance
in a formal framework like this lets
you consider other symmetries.

• For example, ConvNets do not by
default have rotational symmetry.

• Taco Cohen & Max Welling (2016)
derived this: the Group
Equivariant-CNN. Makes the CNN
rotationally invariant.

Generalize a convolution
to any group convolution:

[f ⋆ ψ](x) = ∑
y∈ℤ2

∑
k

fk(y)ψk(x − y)

Image Filter

Translation

Latent pixel coordinate

Input pixel
coordinate

Why is it good to formalize this?

• Describing ConvNet’s equivariance
in a formal framework like this lets
you consider other symmetries.

• For example, ConvNets do not by
default have rotational symmetry.

• Taco Cohen & Max Welling (2016)
derived this: the Group
Equivariant-CNN. Makes the CNN
rotationally invariant.

Generalize a convolution
to any group convolution:

[f ⋆ ψ](x) = ∑
y∈ℤ2

∑
k

fk(y)ψk(x − y)

Image Filter

Translation

Latent pixel coordinate

Input pixel
coordinate

[f ⋆ ψ](g) = ∑
y∈ℤ2

∑
k

fk(y)ψk(g−1y)

Discrete group

Can have this be a rotation group!

Group Equivariant CNN

[f ⋆ ψ](g) = ∑
y∈ℤ2

∑
k

fk(y)ψk(g−1y)

Discrete group

Can have this be a rotation group!

(Note that rotational symmetry is
also a symmetry of the universe)

Graph Nets

Graph Nets

Graph Nets

See Battaglia et al., 2018 for a good review on GNNs

Graph Nets

• The Universe (mostly) shares this permutation symmetry as well; and many laws are equivariant to
exchange of particles.

See Battaglia et al., 2018 for a good review on GNNs

Graph Nets

• The Universe (mostly) shares this permutation symmetry as well; and many laws are equivariant to
exchange of particles.

• Graph Network inductive biases are loosely based on classical mechanics

See Battaglia et al., 2018 for a good review on GNNs

Graph Nets

• The Universe (mostly) shares this permutation symmetry as well; and many laws are equivariant to
exchange of particles.

• Graph Network inductive biases are loosely based on classical mechanics
• Another example of a formal framework from physics which can be applied to learning!

See Battaglia et al., 2018 for a good review on GNNs

Graph Nets

• The Universe (mostly) shares this permutation symmetry as well; and many laws are equivariant to
exchange of particles.

• Graph Network inductive biases are loosely based on classical mechanics
• Another example of a formal framework from physics which can be applied to learning!

See Battaglia et al., 2018 for a good review on GNNs

Graph Nets

• The Universe (mostly) shares this permutation symmetry as well; and many laws are equivariant to
exchange of particles.

• Graph Network inductive biases are loosely based on classical mechanics
• Another example of a formal framework from physics which can be applied to learning!

(Can even exploit this relation to classical mechanics, and distill force laws - see M Cranmer et al., 2020)

See Battaglia et al., 2018 for a good review on GNNs

For the ultimate book on geometry in deep
learning, see geometricdeeplearning.com

(Bronstein, Bruna, Cohen, Veličković)

http://geometricdeeplearning.com

Differential Equations - Neural ODEs

Chen et al., 2018

Differential Equations - Neural ODEs
• Differential equations first created to model

the rate of change in physical systems
(Newton/Leibniz)

Chen et al., 2018

Differential Equations - Neural ODEs
• Differential equations first created to model

the rate of change in physical systems
(Newton/Leibniz)

• In a regular Neural ODE, one optimizes a
learned function such to optimize a
predictive model:

f(y, t; θ)

y(t) = y(0) + ∫
t

0
f(y, τ; θ)dτ

Chen et al., 2018

Differential Equations - Neural ODEs
• Differential equations first created to model

the rate of change in physical systems
(Newton/Leibniz)

• In a regular Neural ODE, one optimizes a
learned function such to optimize a
predictive model:

f(y, t; θ)

y(t) = y(0) + ∫
t

0
f(y, τ; θ)dτ

Chen et al., 2018

Differential Equations - Neural ODEs
• Differential equations first created to model

the rate of change in physical systems
(Newton/Leibniz)

• In a regular Neural ODE, one optimizes a
learned function such to optimize a
predictive model:

f(y, t; θ)

y(t) = y(0) + ∫
t

0
f(y, τ; θ)dτ

• With the obvious applicability to learning time
series, can be applied to learning for general
problems

Chen et al., 2018

Differential Equations - PINN

Differential Equations - PINN
• Learn physical variable: , given some observations.u(x, t; θ)

Differential Equations - PINN
• Learn physical variable: , given some observations.u(x, t; θ)

• Explicitly assume is governed by a specific PDE.u

Differential Equations - PINN
• Learn physical variable: , given some observations.u(x, t; θ)

• Explicitly assume is governed by a specific PDE.u

• Regularize the solution such that is satisfies both the PDE and data.u

Differential Equations - PINN
• Learn physical variable: , given some observations.u(x, t; θ)

• Explicitly assume is governed by a specific PDE.u

• Regularize the solution such that is satisfies both the PDE and data.u

• Unlike LNN and HNN, this is a soft inductive bias.

Differential Equations - PINN
• Learn physical variable: , given some observations.u(x, t; θ)

• Explicitly assume is governed by a specific PDE.u

• Regularize the solution such that is satisfies both the PDE and data.u

• Unlike LNN and HNN, this is a soft inductive bias.

See Karniadakis, et al., (2021)
for a good review.

Truth:

Compute error in PDE

Soft vs Hard

Soft vs Hard
• Soft: it is difficult for the model to deviate from the inductive bias.

Soft vs Hard
• Soft: it is difficult for the model to deviate from the inductive bias.

• Data augmentation is a type of soft inductive bias.

Soft vs Hard
• Soft: it is difficult for the model to deviate from the inductive bias.

• Data augmentation is a type of soft inductive bias.

• Hard: it is impossible for the model to deviate.

Soft vs Hard
• Soft: it is difficult for the model to deviate from the inductive bias.

• Data augmentation is a type of soft inductive bias.

• Hard: it is impossible for the model to deviate.

• e.g., a CNN cannot learn absolute positions

Soft vs Hard
• Soft: it is difficult for the model to deviate from the inductive bias.

• Data augmentation is a type of soft inductive bias.

• Hard: it is impossible for the model to deviate.

• e.g., a CNN cannot learn absolute positions

• For example, an LNN is a hard constraint on the dynamics, whereas a PINN is
a soft constraint.

Soft vs Hard
• Soft: it is difficult for the model to deviate from the inductive bias.

• Data augmentation is a type of soft inductive bias.

• Hard: it is impossible for the model to deviate.

• e.g., a CNN cannot learn absolute positions

• For example, an LNN is a hard constraint on the dynamics, whereas a PINN is
a soft constraint.

• For some inductive biases, hard constraints may be intractable to create. Soft
constraints are useful when a symmetry might be slightly violated.

Explicit vs Implicit

Explicit vs Implicit

• Explicit: an inductive bias created to define a particular functional prior.

Explicit vs Implicit

• Explicit: an inductive bias created to define a particular functional prior.

• Implicit: an inductive bias is present which was not intended.

Explicit vs Implicit

• Explicit: an inductive bias created to define a particular functional prior.

• Implicit: an inductive bias is present which was not intended.

• e.g., large learning rates and small batch sizes define an implicit
regularization term (e.g., Sam Smith et al., 2021 and references therein)

Explicit vs Implicit

• Explicit: an inductive bias created to define a particular functional prior.

• Implicit: an inductive bias is present which was not intended.

• e.g., large learning rates and small batch sizes define an implicit
regularization term (e.g., Sam Smith et al., 2021 and references therein)

• Generally, it seems that making an inductive bias explicit in a formal
framework, such as physics, leads to new insights, and allows one to use
existing methods. Also allows one to control it.

General vs Application-Specific

General vs Application-Specific

• General: an inductive bias that can be used for many different problems

General vs Application-Specific

• General: an inductive bias that can be used for many different problems

• Application-specific: an inductive bias created for a particular physical
problem

General vs Application-Specific

• General: an inductive bias that can be used for many different problems

• Application-specific: an inductive bias created for a particular physical
problem

• For example, a PINN’s inductive bias is the ODE describing the
underlying data; whereas some Neural ODE regularizations are very
general (e.g., J Kelly et al., 2020 and C Finlay et al., 2020)

Summary

Summary
• Many successful inductive biases in deep learning are explicitly or

implicitly informed by physics. Additional insights can be gained when
making this connection explicit!

Summary
• Many successful inductive biases in deep learning are explicitly or

implicitly informed by physics. Additional insights can be gained when
making this connection explicit!

• One should directly consider inductive biases, and what choices to make,
given the following categories:

Summary
• Many successful inductive biases in deep learning are explicitly or

implicitly informed by physics. Additional insights can be gained when
making this connection explicit!

• One should directly consider inductive biases, and what choices to make,
given the following categories:

• Explicit vs Implicit

Summary
• Many successful inductive biases in deep learning are explicitly or

implicitly informed by physics. Additional insights can be gained when
making this connection explicit!

• One should directly consider inductive biases, and what choices to make,
given the following categories:

• Explicit vs Implicit

• General vs Application-Specific

Summary
• Many successful inductive biases in deep learning are explicitly or

implicitly informed by physics. Additional insights can be gained when
making this connection explicit!

• One should directly consider inductive biases, and what choices to make,
given the following categories:

• Explicit vs Implicit

• General vs Application-Specific

• Hard vs Soft

Code tutorial

https://astroautomata.com/inductive_biases_tutorial.html

