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: hy we need it?



What is Self-Supervised Learning?

Self-Supervised Learning (SSL) is a special type of representation learning that
enables learning good data representation from unlabelled dataset.

It is motivated by the idea of constructing supervised learning tasks out of
unsupervised datasets.



What is Self-Supervised Learning?

Self-Supervised Learning (SSL) is a special type of representation learning that
enables learning good data representation from unlabelled dataset.

It is motivated by the idea of constructing supervised learning tasks out of
unsupervised datasets. Why?
1. Data labeling is expensive and thus high-quality labeled dataset is limited.
2. Learning good representation makes it easier to transfer useful information to
a variety of downstream tasks.
o e.g. Adownstream task has only a few examples.
o e.g. Zero-shot transfer to new tasks.

Self-supervised learning tasks are also known as pretext tasks.



What's Possible with Self-Supervised Learning?

Video colorization (Vondrick et al 2018), as a self-supervised learning method, resulting
in a rich representation that can be used for video segmentation and unlabelled visual
region tracking, without extra fine-tuning.
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What's Possible with Self-Supervised Learning?

Despite of not training on supervised labels, the zero-shot CLIP (Radford et al. 2021)
classifier achieve great performance on challenging image-to-text classification tasks.
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Early Work: Connecting the Dots

Restricted Boltzmann Machines Autoencoders - Word2Vec
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Restricted Boltzmann Machines

- Harmonium (Smolensky 1986)
- Contrastive divergence (Hinton 2000; Hinton 2002)
- Greedy layer-wise pre-training (Hinton et al. 2006; Bengio et al. 2007)
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Autoencoder: Self-Supervised Learning for Vision in Early Days

Denoising Autoencoder (Vincent et al. 2008)
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Word2Vec: Self-Supervised Learning for Language

INPUT PROJECTION

Word embeddings to map words to vectors

CBOW & Skip-gram (Mikolov et al. 2013) N s
e Neighboring words — middle word (CBOW) /
e Word — neighboring words (skip-gram) e

GloVe (Pennington et al. 2014) cBOW

e Log-bilinear on word co-occurrences
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Autoregressive Modeling
D
p(v) = [[p(vilv<i)
=1

Hidden Markov Models (Baum & Petrie 1966)
Recurrent Neural Networks (Williams, Hinton, & Rumelhart 1986)
Neural Autoregressive Distribution Estimator (Larochelle et al. 2011)

(Larochelle et al. 2011)
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Siamese Networks

Self-organizing neural networks
(Becker & Hinton 1992)
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Multiple Instance Learning & Metric Learning

Multidimensional scaling (MDS; Cox et al. 1994)
Locally linear embedding (LLE; Roweis et al. 2000)
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Multiple Instance Learning & Metric Learning

Metric learning (Xing et al. 2002) Triplet loss (Schroff et al. 2015)
daw,y) = o = ylla = /@ =) Al — ) Qm R
Positi Anchor Positive o

Contrastive Loss (Chopra & Hadsell et al. 2005)
N-pair loss (Sohn 2016)

1. IfY;; = 0, then update W to decrease
Dw = ||Gw (X;) — Gw(X;)||2

. IfY;; = 1, then update W to increase
Dw = ||Gw(X:) — Gw(X;)ll2



Early Work: Connecting the Dots
Word2Vec
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Methods for Framing Self-Supervised Learning Tasks

Self-prediction: Given an individual data sample, the task is to predict one part of the
sample given the other part.

The part to be predicted pretends to be missing.

"

?

“Intra-sample” prediction
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Methods for Framing Self-Supervised Learning Tasks

Contrastive learning: Given multiple data samples, the task is to predict the
relationship among them.

The multiple samples can be selected from the dataset based on some known logics
(e.g. the order of words / sentences), or fabricated by altering the original version.

:> relationship?

“Inter-sample” prediction
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Self-Prediction

Self-prediction construct prediction tasks within every individual data sample: to
predict a part of the data from the rest while pretending we don't know that part.

» Predict any part of the input from any
other part.

» Predict the future from the past.

i. - |
» Predict the future from the recent past. ' '

» Predict the past from the present.

» Predict the top from the bottom. m
» Predict the occluded from the visible 'y
» Pretend there is a part of the input you « Past Future —

don’t know and predict that. Present Slide: LeCun

(Famous illustration from Yann LeCun)
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Self-Prediction

Self-prediction construct prediction tasks within every individual data sample: to
predict a part of the data from the rest while pretending we don't know that part.

Autoregressive generation
Masked generation

Innate relationship prediction
Hybrid self-prediction

w2
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Self-Prediction: Autoregressive Generation

The autoregressive model predicts future behavior based on past behavior. Any data
that comes with an innate sequential order can be modeled with regression.

Examples:
e Audio (WaveNet, WaveRNN)
e Autoregressive language modeling (GPT, XLNet)
e Images in raster scan (PixelCNN, PixelRNN, iGPT)
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Self-Prediction: Masked Generation

We mask a random portion of information and pretend it is missing, irrespective of the
natural sequence. The model learns to predict the missing portion given other
unmasked information.

Examples:

e Masked language modeling (BERT)

e Images with masked patch (denoising autoencoder, context autoencoder,
colorization)
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Self-Prediction: Innate Relationship Prediction

Some transformation (e.g. segmentation, rotation) of one data sample should
maintain the original information or follow the desired innate logic.

¥:=:9 11213 4

Examples:
e Order of image patches (e.g., relative position, jigsaw puzzle)
e |mage rotation
e (Counting features across patches



Self-Prediction: Hybrid Self-Prediction Models
VQ-VAE + AR
e Jukebox (Dhariwal et al. 2020), DALL-E (Ramesh et al. 2021)

VQ-VAE + AR + Adversarial
e VQGAN (Esser & Rombach et al.2021)
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Contrastive Learning

The goal of contrastive representation learning is to learn such an embedding space in
which similar sample pairs stay close to each other while dissimilar ones are far apart.

After learning
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Contrastive Learning

The goal of contrastive representation learning is to learn such an embedding space in
which similar sample pairs stay close to each other while dissimilar ones are far apart.

1. Inter-sample classification
2. Feature clustering
3. Multiview coding
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Contrastive Learning: Inter-Sample Classification

Given both similar (“positive”) and dissimilar (“negative”) candidates, to identify which
ones are similar to the anchor data point is a classification task.

There are creative ways to construct a set of data point candidates:
1. The original input and its distorted version
2. Data that captures the same target from different views
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Contrastive Learning: Inter-Sample Classification

Common loss functions:

Contrastive loss (Chopra et al. 2005)

Triplet loss (Schroff et al. 2015; FaceNet)

Lifted structured loss (Song et al. 2015)

Multi-class n-pair loss (Sohn 2016)

Noise contrastive estimation (“NCE"; Gutmann & Hyvarinen 2010)
InfoNCE (van den Oord, et al. 2018)

Soft-nearest neighbors loss (Salakhutdinov & Hinton 2007,
Frosst et al. 2019)
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Contrastive Learning: Inter-Sample Classification

Contrastive loss (Chopra et al. 2005): Works with labelled dataset.

Encodes data into an embedding vector such that examples from the same class have
similar embeddings and samples from different classes have different ones.

Given two labeled data pairs (xi, ¥:) and (xj,9;):

Leont (X;, Xj, 0) =1y = il

Ifo(x:) — fo(x))II3

minimize

+ I][yl # yj] max(O, e —

Wfo(x:) — fo(X)ll2

N—"

maximize
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Contrastive Learning: Inter-Sample Classification

Triplet loss (Schroff et al. 2015): learns to minimize the distance between the anchor x
and positive x+ and maximize the distance between the anchor x and negative x- at the
same time.

Given a triplet input (x,x*,x7),

Lo X5, x7) = Y max (0, [If®) = F&xHIZ = IF®) = FEOI2 +€)

XeX
@:tive

Negative m
AK. LEARNING
Anchor (Schroff et al. 2015)

Positive Positive
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Contrastive Learning: Inter-Sample Classification

N-pair loss (Sohn 2016) generalizes triplet loss to include comparison with multiple
negative samples.

Given one positive and N-1 negative samples, {x,x*,x{,...,Xy_{}

N-1
Lnpair (% X, (X7 Y1) = log (14 )] exp(f0)"f(x;) — f()f(x1)))
i=1

exp(f(x)Tf(x*))
exp(f(x)Tf(x") + Yo' exp(fx)Tf(x;))

= —log
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Contrastive Learning: Inter-Sample Classification

Lifted structured loss (Song et al. 2015): utilizes all the pairwise edges within one
training batch for better computational efficiency.

L =Dy +log (X, exple—Dw)+ Y, exple—Dp))

(iL,k)EN G.DEN
where Dy = |If(x;) — f(x))ll2
(4,7) € P
P set of positive pairs
N set of negative pairs X1 X2 X3 X4 X5 @ Xg

(Song et al. 2015)
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Contrastive Learning: Inter-Sample Classification

Noise Contrastive Estimation (NCE) (Gutmann & Hyvarinen 2010) runs logistic
regression to tell apart the target data from noise.

Given target sample distribution p and noise distribution g,

1 N / just cross entropy
Lce = =5 Y, [log 6(Zo(x) +log(1 = o(Zo(X:)]
i=1

where logit Ze(u) = log p;((uu)) = log po(u) — log g(u)
1 Po

sigmoid e6(?) =

1 +exp(—f) po+q
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Contrastive Learning: Inter-Sample Classification

InfoNCE (van den Oord, et al. 2018): uses categorical cross-entropy loss to identify the
positive sample amongst a set of unrelated noise samples.

Given a context vector ¢, the positive sample should be drawn from the conditional
distribution p(x|c), while N-1 negative samples are drawn from the proposal

distribution p(x), independent from the context c.

The probability of detecting the positive sample correctly is:

p(x|c)
p(x)

f (Xpos, €)
Z;'Vzl f(xja C)

p(C = pos|X,c) = where the density functionis f(x,c) «
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Contrastive Learning: Inter-Sample Classification

Soft-Nearest Neighbors Loss (Frosst et al. 2019) extends the loss function to include
multiple positive samples given known labels.

Given a batch of samples {x,,y,)}l 1

temperature term
Zl¢1,y _y]J_ 2B eXp(—f(X,-, X])/T{

f'snn = == log
; Zl;ék k=1,....B exp( —f (X;, Xp)/7)
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Contrastive Learning: Feature Clustering

Find similar data samples by clustering them with learned features.

Core idea: Use clustering algorithms to assign pseudo labels to samples such that we
can run intra-sample contrastive learning.

Examples: DeepCluster (Caron et al 2018); InterCLR (Xie et al 2021)
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Contrastive Learning: Multiview Coding

Apply the InfoNCE objective to two or more different views of input data

‘A\ > Encoder

Match

—  Encoder

Became a mainstream contrastive learning method:
e AMDIM (Bachman et al. 2019)
e Contrastive multiview coding (CMC; Tian et al. 2019)
e And many, many more!
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Contrastive Learning Between Modalities

“Views" can be from paired inputs from two or more modalities
e CLIP (Radford et al. 2021), ALIGN (Jia et al. 2021): enables zero-shot classification,
cross-modal retrieval, guided image generation.
e CodeSearchNet (Husain et al 2019): contrast learning between text and code.
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Recap: Pretext Tasks

Step 1: Pre-train a model for a pretext task Step 2: Transfer to applications

Pretext Task Downstream
Task
=\

—_—

/ Predictor \ / Predictor <— Fine-Tune

C—

Transfer

Model Model

\ 4

Pre-training
Data

Task-specific
Data
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Pretext Tasks: Taxonomy

Generative

VAE

GAN

Autoregressive

Self-Prediction

—[ Masked Prediction ]

Denoising AE

Context AE

Flow-based

Diffusion

—[ Channel Shuffling ]

Colorization

Split-brain

Innate Relationship

—[ Patch Positioning ]

Relative Position

Jigsaw

Image Rotation

[ Feature Counting ‘

( )

Contrastive

Contrastive J

Instance Discrim. ]

: Augmented Views ]
MoCo & SimCLR
Barlow Twins
BYOL & SimSiam

i Clustering-based ]

Predictive Coding
. J

Contrastive &
| Semi-Supervised

45



Variational Autoencoders

Image Pretext Tasks

Auto-Encoding Variational Bayes (Kingma et al. 2014)

QAN NNANNNANNNN SN SNNNNNS
QAVIAYEELELL L LW NN~
QAVIAINNNGEELLLVVY YN~
QAVVNININn o toto ©YVOVVW e~~~
QAOOVNHINININMHWEBIBIVIVIY W = - —
QAQOIMHINMNMMON M DIID D W - ——
QOODOMMNMNMMNMMEODD D — —
QODMMI MMM ®DD DD e —
QOMME MMM NGO e on am o = —
QAN P07 00 00 On & o~~~
G cforororororrrrsso s~
Saddddogororrrrrrrraan~
VddadddorrrrrrrTrrTITIIINN
VSddddgorrrrrrdIITIRIXINN
SAdITTTrrrrrrrrI™2R2RANN
K g gl gl el all ol ool ol ol ol ol U NN LN

L |
~
N
= »
] ~~ Y
u 5
e l
g 2 S
8 S —
is G
S-
o
A ;
N
L
 —
(]
o
o
(&)
[0
a
~
~
&
D
nL Q
...nUVZ) —_—
s o R ~
c @ o —
S S ——)
m 1
5 s -
o A >~
w\
 —
()]
©
(o]
(&)
C
L
ol
©
S =

(Kingma et al. 2014)
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Image Pretext Tasks: Generative Adversarial Networks

Jointly train an encoder, additional to the usual GAN (Goodfellow et al. 2014):

- Bidirectional GAN (BiGAN; Donahue et al. 2016)
- Adversarially Learned Inference (ALI; Dumoulin et al. 2016)

G(z) X

|

Generator G(2), 2 x, E(x) Encoder

f

4 E(x)

GAN inversion: learning encoder post-hoc and/or optimizing for given image
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Vision Pretext Tasks: Autoregressive Image Generation

e Neural autoregressive density estimation (NADE; Larochelle et al. 2011)
e PixelRNN, PixelCNN (Oord et al. 2016)

e Image GPT (Chen et al. 2020)
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Raster scan order Image GPT (Chen et al. 2020)



Vision Pretext Tasks: Autoeregressive Image Generation

Diffusion modeling: Follows a Markov chain of diffusion steps to slowly add random
noise to data and then learn to reverse the diffusion process to construct desired data
samples from the noise. (Sohl-Dickstein et al 2015; Yang & Ermon 2019; Ho et al. 2020;
Dhariwal & Nichol 2021)

-2 =2 =2

Diffusion modeling

(Dhariwal & Nichol 2021) 49



Vision Pretext Tasks: Masked Prediction

e Denoising autoencoder (Vincent et al. 2008)
o Add noise = Randomly mask some pixels
o Only reconstruction loss

e Context autoencoder (Pathak et al. 2016)
o Mask a random region in the image
o Reconstruction loss + adversarial loss
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Vision Pretext Tasks: Colorization and More

e Colorization (Zhang et al. 2016)
o Predict the binned CIE Lab color space
given a grayscale image.

e Split-brain autoencoder (Zhang et al. 2017)
o Predict a subset of color channels
from the rest of channels.
o Channels: luminosity, color, depth, etc.

o1



Vision Pretext Tasks: Innate Relationship Prediction

e |earn the relationship among image patches:
o Predict relative positions between patches (Doersch et al 2015)
o Jigsaw puzzle using patches (Noroozi & Favaro 2016)

R
AT
PR N

Given a patch, predict which one of 8 Output a probability vector per patch index
neighboring locations another patch is in out of a predefined set of permutations

52



Vision Pretext Tasks: Innate Relationship Prediction

e RotNet: predict which rotation is applied (Gidaris et al. 2018)
o Rotation does not alter the semantic content of an image.

o - Eeh e o

e Representation Learning by Learning to Count (Noroozi et al. 2017)
o Counting features across patches without labels, using equivariance of counts

e s
| B
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Contrastive Predictive Coding and InfoNCE

Contrastive Predictive Coding (CPC) (van den Oord et al. 2018)

e classify the “future” representation amongst a set of unrelated “negative” samples

The InfoNCE loss

Ct Predictions
autoregressive @ @ @ @ .\‘\.\ \\ \'\.\ @t-l—kact)
model \ A \ ‘CCPC = _IEX log
Zi41 242 Zt+3 2t+4 Z ) L, Ct)
encoder/gem\ /genc\ /genc\ /genc\ /genc\ /genc\ /genc\ /genc\
| Te—3 | Xi—2 | Te—1 | T | Te41 | Tev2 | Te43 | Tiqa |

A density function to preserve

the mutual information between
Ty and c;

(van den Oord et al. 2018)
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Vision Pretext Tasks: Inter-Sample Classification

e Exemplar CNN (Dosovitskiy et al. 2014)

Instance-level discrimination (InstDisc; Wu et al. 2018)
o Each instance is a distinct class of its own: # classes = # training samples

exp (vIv/T)
o Non-parametric softmax that compares features: 5= L exp (vVIv/7)’
=

o Memory bank for storing representations of past samples, V = {v;}
CNN backbone [ | image v
ackbone - 1-th imag v;
low dim L2 norm / B 2-th image V3
Non-pz g5 M ‘
— — Softmax 458 i-th image emory
Bank i\
1288 128D \ n-1 th image Vn_ /) S

ol \ E _ o
- 2048D L & n-th image S

— Vn

fo(z)

128D Unit Sph
(Wu et al. 2018) NESPNEE 55



Vision Pretext Tasks: Contrastive Learning

The common approach is to make multiple views (e.g. data augmentation) to one
image and consider the image and its distorted version as similar pairs, while
different images are treated dissimilar.

“View” 1

similar

“View" 2

\ . L.
1 dissimilar
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Vision Pretext Tasks: Data Augmentation and Multiple Views

Augmented Multiscale Deep InfoMax
(AMDIM; Bachman et al. 2019)

e Views from different augmentations

Contrastive Multiview Coding
(CMC; Tian et al. 2019)
e Multiple views from different channels

Pretext-Invariant Representation Learning
(PIRL; Misra et al. 2019)
e Jigsaw transformation

Unmatching view

Pretext Image
Transform

Matching views

(Tian et al. 2019)

Standard Pretext
Learning

It

Predict property of t

Representation Learning

I
{

Pretext Invariant

It
!

ConvNet

Representation

Encourage to be similar

ConvNet

(Misra et al. 2019)
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Vision Pretext Tasks: Inter-Sample Classification

MoCo (Momentum Contrast; He et al. 2019)

Memory bank is a FIFO queue now

The target features are encoded using a momentum encoder

MoCo v2 (Chen et al. 2020): MLP projection head & stronger data augmentation
MoCo v3 (Chen et al. 2021): Vision Transformer, in-batch negatives

gradient ~ contrastive loss

A
i_E;* similarity 4—7

q ko k1 ko ...
T queue T
encoder m:r:r;ir;t:rm O < mb + (1 —m)o,
A e a \
auery x?ﬂ x?w'xgw  (FIFO queue) (He et al. 2019)

(In-batch negatives in MoCo V3)
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Vision Pretext Tasks: Inter-Sample Classification

SimCLR (Simple framework for Contrastive Learning of visual Representations)

Contrastive learning loss
SImCLR (Chen et al. 2020 Feb)

o f(.)-base encoder

o g(.) - projection head layer

o In-batch negative samples
SimCLRv2 (Chen et al. 2020 Jun)

o Larger ResNet models

o Deeperg(.)

o Memory bank

h; =f&), h=f&) =z =gh;), z =g,

Maximize agreement

Z; = > Zj
)] fo0)
h; <— Representation —> h;

exp(sim(z;, z;)/7)

i I
SimCLR 2 .

SN Vi) €Xp(sim(z;, z;)/7)
(Chen et al. 2020)
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Vision Pretext Tasks: Inter-Sample Classification

Barlow Twins (Zbontar et al. 2021)
e |earnto make the cross-correlation matrix between two output features for two
distorted version of the same sample close to the identity.

Distorted Represen-
images Net  tations N > >
Empirical Target L= 2(1 —Cy)*+ 1 z Z Cij
vEB 74 Cross-cofrr. Cross-cofrr. - ey
Images \ c z | — |
| I | . .
4 el Lo invariance term redundancy reduction term
X T~ T backprop. | .I..- — zA .
| J b B
| where C;; =
A B feature 2 B \2
’ b Z dimension \/Zb(zg’i) \/Zb(szi)
<
backprop.

(Zbontar et al. 2021)



Vision Pretext Tasks: Non-Contrastive Siamese Networks

Learn similarity representations for different augmented views of the same sample, but

no contrastive component involving negative samples. Brad o
\
predictor
e Minimize L2 distance between online and target features A moving
. e average m:::;zr(lit;m
e Bootstrap Your Own Latent (BYOL; Grill et al. 2020) ) ;
o Momentum-encoded features as the target | image
BYOL
e SimSiam (Chen & He 2020) T
\4
o No momentum encoder i
o Large batch size unnecessary encoder encoder

A A
|
|

e BatchNorm seems to be playing an important role

image

(Chen & He 2020) SimSiam
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Vision Pretext Tasks: Feature Clustering with K-Means

e DeepCluster (Caron et al. 2018): Iteratively clusters features via k-means and uses
cluster assignments as pseudo labels to provide supervised signals.

e Online DeepCluster (Zhan et al. 2020): Performs clustering and network update
simultaneously rather than alternatingly.

Classification

9
,acw‘o I
% -

Input Convnet

R L
S

1 Pseudo-labels

Clustering

\
o~__°

(Zhan et al. 2020)

e Prototypical Cluster Learning (PCL; Li et al. 2020): Online EM for clustering,
combined with InfoNCE for smoothness
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Vision Pretext Tasks: Feature Clustering with Sinkhorn-Knopp

e Sela (Self-Labelling; Asano et al. 2020)

e SwAV (Swapping Assignments between multiple Views; Caron et al. 2020)

o Implicit clustering via a learned prototype code (“anchor clusters”).
o Predict cluster assignment in the other column.

Codes

™

Swapped
Prediction

>Z2

Codes

(Caron et al. 2020)
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Vision Pretext Tasks: Feature Clustering to Improve SSL

e InterCLR (Xie et al. 2020): Inter-sample contrastive pairs are constructed

according to pseudo labels obtained by clustering.
e Divide and Contrast (Tian et al. 2021): Train expert models on the clustered
datasets and then distill the experts into a single model.

1. Train base model
& cluster representations

0% 0o
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LIS
DNy EmEn
DAY EEEE
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° o4
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P O EEEN
t £
1 = pooo
j— - Dooo
i ® oooo
] 2
Encoder [ZJ—
O DmEEm
[ O Zomm
1 EEEE
oEEE
EEEEEEEE ini
ENEEEEEE Training bl

BEEEEEEESE images

2. Train expert models

on subsets

TIHLL
JLLLL
JLLLL
— 10
TIHILL

.

l

3. Distillation

Predict

.D.l;l ’ _\__U"‘ A,U base model ,

A

JLLLL
: . _>Illlll_> . Predict :
'm — Jligee — @ experts |

JLILL
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(Tianetal. 2021) @4

.



Vision Pretext Tasks: Nearest-Neighbor

NNCLR (Dwibedi et al. 2021)

e Contrast with the nearest neighbors in the embedding space
e Allows for lighter data augmentation for views

ﬂmini-batch random

augmentation

random
augmentation

manifold of all samples

5
1 encoder
1
]
]
2
1 |
|l _L-="T o
il | Soanis
-------- ! } e e vy : ] —
el 1 /,* i e S : . €-——>
™ oY ¥ : InfoNCE
\\A: e 7. z Loss
o B
view 1 — NNs of view 2
support set . -°

nearest neighbor of view 1 in the support set

(Dwibedi et al. 202135



Vision Pretext Tasks: Combining with Supervised Loss

e Combine supervised loss + self-supervised learning
o Self-supervised semi-supervised learning (S4L; Zhai et al 2019)
o Unsupervised data augmentation (UDA; Xie et al 2019)

e Use known labels for contrastive learning
o Supervised Contrastive Loss (SupCon; Khosla et al. 2021)

Anchor Negatives Anchor Negatives
A7 } T g

Positives/-f
L,

Supervised Contrastive (KhOS|a et al. 2021)

Self Supervised Contrastive
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Pretext Tasks: Taxonomy

Generative

VAE

GAN

Autoregressive

Self-Prediction

—[ Masked Prediction ]

Denoising AE

Context AE

Flow-based

Diffusion

—[ Channel Shuffling ]

Colorization

Split-brain

Innate Relationship

—[ Patch Positioning ]

Relative Position

Jigsaw

Image Rotation

[ Feature Counting ‘

( )

Contrastive

Contrastive J

Instance Discrim. ]

: Augmented Views ]
MoCo & SimCLR
Barlow Twins
BYOL & SimSiam

i Clustering-based ]

Predictive Coding
. J

Contrastive &
| Semi-Supervised

6/



Video Pretext Tasks: Innate Relationship Prediction

Most image pretext tasks can be applied to videos. However, with an additional time
dimension, much more information about the video shot configuration or the physical
world can be extracted from videos.

e Predicting object movements
e 3D motion of camera
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Video Pretext Tasks: Optical Flow

Tracking object movement tracking in time

e Tracking movement of image patches
(Wang & Gupta 2016)

>

(a) Unsupervised Tracking in Videos

Learning to Rank

Conv Conv Conv
Net Net Net

_ M D ,
T.(w L '

Query Tracked Negative D: Distance in deep feature space
(First Frame) (Last Frame) (Random)

(b) Siamese-triplet Network (c) Ranking Objective

Segmenting based on motion
(Pathak et al. 2017)
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Video Pretext Tasks: Sequence Ordering

e Temporal order verification (Misra et al. 2016, Fernando et al. 2017)

Temporally Correct order
Predictedodd ( Y=2 )
2 element /
J =~
[ fc8 |
I fc7 I
° | Fusion Layer |
T [fc6 ] [fc6 ] [fc6 ]
;
g : : :
% | VideoclipEncoder | | Video-clip Encoder | Video-clip Encoder

Temporally Incorrect order o Somectorder X Wrong order

(Misra et al. 2016) (Fernando et al. 2017)

e Predict the arrow of time, forward or backward (Wei et al. 2018)

v

" Correct order
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Video Pretext Tasks: Colorization

Tracking emerges by colorizing videos (Vondrick et al. 2018)
e Copy colors from a reference frame to another target frame in grayscale by
leveraging the natural temporal coherence of colors across video frames.

Reference Frame Input Frame

v"‘--lllll

Reference Colors Target Colors

(Vondrick et al. 2018)

/1



Video Pretext Tasks: Colorization

Tracking emerges by colorizing videos (Vondrick et al. 2018)
e Used for video segmentation or human pose estimation without fine-tuning!

Predicted Skeleton

(Vondrick et al. 2018)
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Video Pretext Tasks: Contrastive Multi-View Learning

metric loss

TCN (Sermanet et al. 2017)
e Usetripletloss
e Different viewpoints at the same
timestep of the same scene should share g modaities)
the same embedding, while embedding A
should vary in time, even of the same
camera viewpoint.

attraction repulsion
- sy B a:

-

anchor | positive negative

TCN embedding
1 1

L -
/ deep network \

View

1 -

Multi-frame TCN (Dwibedi et al. 2019)
e Usen-pairs loss
e Multiple frames are aggregated intoone 24
embedding.

>

Time

It Fhegative

(Sermanet et al. 2017)
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Video Pretext Task: Autoregressive Generation

e Predicting videos with VQ-VAE (Walker et al. 2021)
VideoGPT: Video generation using VQ-VAE and Transformers (Yan et al. 2021)

Generated Frames

Video
Bottom Layer Top Layer Top Layer
j ' . m
=)
(2] Top Prior Model
2
Quantize ]
=
Decoder L Conditioning
Resize and Concatenate Frames Bottom Prior Model Bottom Layer
VQ-VAE Model Predicting Video

(Walker et al. 2021)
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Audio Pretext Task: Autoregressive Modeling

Jukebox (Dhariwal et al. 2020)

Codebook €,
]
e N

Vector Codebook

ﬂ- Quantization l I I | | Lookup ﬁ_ Decode ‘
Vector Codebook
Encode Quantization Looku Decode
opepsppeme———— SR — ([ [[[[[[TT————0 Il Wl vy
Vector Codebook
Encode Quantization Lookup I Decode
e ]
SRR ——— MM R | E———wbene
X; h; = E(xf) zy = argminy | h, —e; | e, X; = D(ez,)
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Audio Pretext Task: Autoregressive Modeling

Jukebox (Dhariwal et al. 2020)

Conditioning
Information

4—[ Top-Level Prior ]

| | | * | | |

(

L Middle Upsampler ]

INNNNRNEREREREREY !Hll||||||||

,[ Bottom Upsampler ]

Ay

[LHIARIRHARQRRARR

]

[ VQ-VAE Decoder ]

b
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Audio Pretext Task: Autoregressive Modeling

CALM (Castellon et al. 2021)

e Jukebox representation for MIR tasks

Compare .
Prediction TaHTg h:gfl Prff;;;:? &
to Label

t
| Shallow Probe |

Layer N f
Representatons (D@ OCO0OO0COO0 @
*

(continuous)

Frozen Language Model
(first N layers)

Codified m? I ; ; ; ; (T) I

Audio

[ Frozen Discrete Encoder ]

f

Task
Audio

TagBox (Manilow et al. 2021)

Source separation by steering
Jukebox’ latent space

Input
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|

/| Gradient
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RO o

I
I
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Audio Pretext Tasks: Contrastive Learning

COLA (Saeed et al. 2021) assigns high similarity between audio clips extracted from
the same recording and low similarity to clips from different recordings.

Multi-Format audio contrastive learning (Wang & van den Oord 2021) assigns high

similarity between the raw audio format and the corresponding spectral representation.

T 2 waveform
= A - __
=~ =—~
Raw Waveform \ Raw Waveform \ E
Large-scale "w ] Large-scale "
Unlabeled 7 Unlabeled 7
Audio Dataset xr Audio Dataset QX spectrogram

(Saeed et al. 2021)
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Audio Pretext Task: Masked Language Modeling for ASR

Wav2Vec 2.0 (Baevski et al. 2020)

Contrastive loss
L
Context

representations ¢ F ﬁ { * T

Transformer

Masked

Latent speech Z

representations

A VR X m

Quantized
representations Q

HUBERT (Hsu et al. 2021)

Acoustic unit discovery system
(e.g., K-means on MFCC)

T
|
v

T
|
v

1

1

1

:

1

! 1

L 1

A4 A4 i

Z Zy Z5 24 Z5 6 :
1

1

HuBERT :
| Transformer Il
1

F—f 1t 1 f |
1

X, [MSK]|  [[MSK]|  |[MSK] X5 5% '
¥ 4 P
CNN encoder |:

A 1

1 !

1

R

s

PN e

Also employed by SpeechStew (Chan et al. 2021), BigSSL (Zhang et al. 2021)
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Multimodal Pretext Tasks

MIL-NCE (Miech et al. 2020)

o Find matching narration with video

sander as you're going over this entire ]

i |

1
0?74_32 [ area otherwise the end all product won't ]

07'!_/3 " [ be as flat as you would like it so just ]

2
0.7{37 [ be aware now once you have them enjoy ]

4
gm [ your sanding down your one on round l

CLIP (Radford et al. 2021), ALIGN (Jia et al. 2021)
o Contrast text and image embeddings from paired data

Jy (Miech et al. 2020)
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Language Pretext Tasks: Generative Language Modeling

Pretrained language models: They all rely on unsupervised text and try to predict one
sentence from the context.

GPT: Autoregressive, predict the next token based on the previous tokens.
BERT: Masked language modeling (MLM) & Next sentence prediction (NSP)
ALBERT: Sentence order prediction (SOP)

ELECTRA: Replaced token detection (RTD)
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Language Pretext Tasks: Sentence Embedding

Skip-thought vectors (Kiros et al. 2015)
e Predict sentences based on other sentences around.

Quick-thought vectors (Logeswaran & Lee 2018)

e |dentify the correct context sentence among other contrastive sentences.

Spring had come. I @—

They were so black. »_—»@_L
And yet his crops didn’t grow. —»_—» @_%

He had blue eyes. —»_—» @—3>

Classifier

— 2

(Quick-thought vectors;
Logeswaran & Lee 2018)
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Language Pretext Tasks: Sentence Embedding

IS-BERT (“Info-Sentence BERT”; Zhang et al. 2020)
e mutual information maximization

SimCSE (“Simple Contrastive learning of Sentence Embeddings”; Gao et al. 2021)
e Predict a sentence from itself with only dropout noise.

e One sentence gets two different versions of dropout augmentations.

(a) Unsupervised SimCSE

(b) Supervised SimCSE
Different dropout masks

in two forward passes

[ Two dogs are running. ]»

~ (G
Two dogs |+ °—| There are animals outdoors.
N : W label=entailment
are running. \
A 1AM
. TR \ . .
A man surfing on the sea. (@@ I' ‘l‘\\\\ ‘—| The pets1 %rf sutmdg' on a couch.
/ | \\\ abel=contradiction
— —— L
A kid is on a skateboard. (‘;‘_\’:‘,‘( - - @® ‘| ‘\\\ b +—
E B E label=
L LT T ERRI PP 3 1V =
: : [T “
; Encoder ; R label=
: e ; 1\
. — DPositive instance i (33 | EO)—
: .. \ label=
. —= Negative instance : \
Rt st s ss s e Y Wy
—/ -

label=
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Language Pretext Tasks: Sentence Embedding

Most of the models for learning sentence embedding relies on supervised NLI (Natural
Language Inference) datasets, such as SBERT (Reimers & Gurevych 2019), BERT-flow
(Li et al. 2020), Whitening SBERT (Su et al. 2021).

Unsupervised sentence embedding models (e.g. unsupervised SImCSE) still have
performance gap with the supervised version (e.g. supervised SImCSE).
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Techniques: Data Augmentation

Data augmentation setup is critical for learning good embedding.

It introduces the non-essential variations into examples without modifying
semantic meanings and thus encourages the model to learn the essential part
within the representation.

e |mage augmentation
e [ext augmentation
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Techniques: Image Augmentation

e Basic Image Augmentation

©)

O O O O O

Random crop

color distortion
Gaussian blur

color jittering
random flip/rotation
etc.

e Augmentation Strategies

e |mage Mixture
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Techniques: Image Augmentation

Basic Image Augmentation

Augmentation Strategies
o AutoAugment (Cubuk, et al. 2018): inspired by NAS
o RandAugment (Cubuk et al. 2019): reduces NAS search space in AutoAugment.
o PBA (Population based augmentation; Ho et al. 2019): evolutionary algorithm
o UDA (Unsupervised Data Augmentation; Xie et al. 2019): minimize the KL
divergence between the predicted distribution over an unlabelled example and its
unlabelled augmented version.

Image Mixture
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Techniques: Image Augmentation

e Basic Image Augmentation
e Augmentation Strategies

e Image Mixture
o Mixup (Zhang et al 2018): weighted pixel-wise combination of two images.
o Cutmix (Yun et al 2019): mix in a local region of one image into the other.
o MoCHi ("Mixing of Contrastive Hard Negatives”; Kalantidis et al 2020): mixture of
hard negative samples.

89



Techniques: Text Augmentation

e Lexical Edits
o EDA (Easy Data Augmentation; Wei & Zou 2019): synonym replacement, random
insertion/swap/deletion.
o Contextual Augmentation (Kobayashi 2018): word substitution by BERT prediction.

e Back-translation

e Dropout and Cutoff
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Techniques: Text Augmentation

L exical Edits

O

Back-translation (Sennrich et al. 2015)

Back-translation augments one sentence by first translating it to another language
and then translating it back to the original language.
O

CERT (Fang et al. 2020) generates augmented sentences via back-translation.
Dropout and Cutoff

(I

I like eating white peaches

Translate to Korean

rir
b

similar

ish
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Techniques: Text Augmentation

e |exical Edits
e Back-translation

e Dropout and Cutoff
o  SImCSE uses dropout (Gao et al. 2021)
o Cutoff augmentation for text (Shen et al. 2020): tokens, feature columns, spans.

Sentence as a L X d matrix

e — T
L L L
LTI
p p p (Shen et al 2020)
(a) Token Cutoff (b) Feature Cutoff (c) Span Cutoff
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Hard Negative Mining

Hard negative samples are different to learn. They should have different labels from the
anchor sample, but the embedding features may be very close.

Hard negative mining is important for contrastive learning.

Challenging negative samples encourages the model to learn better representations
that can distinguish hard negatives from true positives.
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Hard Negative Mining

Explicit hard negative mining

e Extract task-specific hard negative samples from labelled datasets.
o e.g. “contradiction”sentence pairs from NLI datasets. (Most sentence
embedding papers)
e Keyword based retrieval
o e.g. BM25 search results (Karpukhin et al. 2020)
e Upweight the negative sample probability to be proportional to its similarity to the
anchor sample (Robinson et al. 2021)
e MoCHi (Kalantidis et al. 2020): mine hard negative by sorting them according to
similarity to the query in descending order.
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Hard Negative Mining

Implicit hard negative mining

e In-batch negative samples
e Memory bank (Wu et al. 2018, He et al. 2019) — Increase batch size
e Large batch size via various training parallelism
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Contrastive learning captures shared information between views

InfoNCE (van den Oord et al. 2018) is a x
lower bound to M| between views: o ~.
Views V] v2
1(v;v)) 2 l(z52,) = 1og(K) = £, o ver i« l
Encoder Encoder

Minimizing INfoNCE leads to maximizing
the MI between view 1 and view 2.

Q: How can we design good views? Embeddings 21 22

NS

Contrast



The InfoMin Principle

Optimal views are at the sweet spot where it only encodes useful information for transfer
e Minimal sufficient encoder depends on downstream tasks (Tian et al. 2020)
e Composite loss for finding the sweet spot (Tsai et al. 2020)

# bits transfer

) } I(vi;v2) performance

/“\_* not enough too much
) Sweet Spot i 3
& s signal noise

——— excess hypothesis

x y info
1% y) > —_ \
missing

info

A

captured info

(Tian et al. 2020)

>
>

I(vi;v2) = I(x;y) .
I(vi;ve) = I(x;y) I(Vl;Vz; L2 y I(vy;v2) 08




Alignment and Uniformity on the Hypersphere

Contrastively learned features are more uniform and aligned.
e Uniform: features should be distributed uniformly on the hypersphere S¢
e Aligned: features from two views of the same input should be the same

Feature Distribution

Feature Distribution

Feature Distribution

1.0 4 1.0 A 1.0 A
0.5 1 0.5 A1 ‘ 0.5 A
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e T L. R & F
Angles Angles Angles
Random init. Supervised Contrastive



Dimensional Collapse

Contrastive methods sometimes suffer from dimensional collapse (Hua et al. 2021)
e Features span lower-dimensional subspace instead

Two causes demonstrated by Jing et al. (2021)
e Strong augmentation & implicit regularization

(Jing et al. 2021)

Complete Collapse Dimensional Collapse 100



Provable Guarantees for Contrastive Learning

Sampling complexity decreases when:
e Adopting contrastive learning objectives (Arora et al. 2019)
e Predicting the known distribution in the data (Lee et al. 2020)

Linear classifier on learned representation is nearly optimal (Tosh et al. 2021)

Spectral Contrastive Learning (HaoChen et al. 2021)
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Future Directions

e Large batch size — improved transfer performance.

e High-quality large data corpus — Better performance.

o Learning from synthetic or Web data.

o Measuring dataset quality and filtering / active learning

e Combine multiple pretext tasks.
o How to combine
o Best strategies

Efficient negative sample selection.

ImageNet Top-1 Accuracy (%)

~
a1
T

~
o

[e)]
Q1
T

(0]
o

[¢)]
1

¥Supervised ASiCLR )
=
3 P )
*SimCLR | e )
oPIRL-c2x
AMDIM
% .MOCO (2X)
v PIRL-ens.
PIRL . ——
[ *MOCO .
LA
L eRotation
elnstDisc
25 50 100 200 TR

Number of Parameters (Millions)

103



Future Directions

e Data augmentation tricks have critical impacts but are still quite ad-hoc
o Modality-dependent
o Theoretical foundations
e Improving training efficiency
o Self-supervised learning methods are pushing the deep learning arms race
o Direct impacts on the economical and environmental costs
e Social biases in the embedding space.
o Early work in debiasing word embedding.
o Biases in Dataset

104



Thank You

Visit openai.com for more information.

FOLLOW @OPENAI ON TWITTER



