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● Introduction: motivation, basic concepts, examples.
● Early work: look into connection with old methods.
● Methods

○ Self-prediction
○ Contrastive Learning

● Pretext tasks: a wide range of literature review.
● Techniques: improve training efficiency.
● Future directions

Outline
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Introduction
What is self-supervised learning and why we need it?
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Self-Supervised Learning (SSL) is a special type of representation learning that 
enables learning good data representation from unlabelled dataset.

It is motivated by the idea of constructing supervised learning tasks out of 
unsupervised datasets.

What is Self-Supervised Learning?
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Self-Supervised Learning (SSL) is a special type of representation learning that 
enables learning good data representation from unlabelled dataset.

It is motivated by the idea of constructing supervised learning tasks out of 
unsupervised datasets. Why?
1. Data labeling is expensive and thus high-quality labeled dataset is limited.
2. Learning good representation makes it easier to transfer useful information to 

a variety of downstream tasks.
○ e.g. A downstream task has only a few examples.
○ e.g. Zero-shot transfer to new tasks.

Self-supervised learning tasks are also known as pretext tasks.

What is Self-Supervised Learning?
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Video colorization (Vondrick et al 2018), as a self-supervised learning method, resulting 
in a rich representation that can be used for video segmentation and unlabelled visual 
region tracking, without extra fine-tuning.

What’s Possible with Self-Supervised Learning?
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Despite of not training on supervised labels, the zero-shot CLIP (Radford et al. 2021) 
classifier achieve great performance on challenging image-to-text classification tasks.

What’s Possible with Self-Supervised Learning?
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Early Work
Precursors to recent self-supervised approaches
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Restricted Boltzmann Machines

Autoregressive Modeling

Early Work: Connecting the Dots

Word2Vec

Multiple Instance/Metric Learning

Autoencoders

Siamese networks
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- Harmonium (Smolensky 1986)
- Contrastive divergence (Hinton 2000; Hinton 2002)
- Greedy layer-wise pre-training  (Hinton et al. 2006; Bengio et al. 2007)

Restricted Boltzmann Machines

(Hinton 2000)
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Denoising Autoencoder (Vincent et al. 2008)

Autoencoder: Self-Supervised Learning for Vision in Early Days

(Vincent et al. 2008) 11



Word embeddings to map words to vectors

CBOW & Skip-gram (Mikolov et al. 2013)
● Neighboring words → middle word (CBOW)
● Word → neighboring words (skip-gram)

GloVe (Pennington et al. 2014)
● Log-bilinear on word co-occurrences

Word2Vec: Self-Supervised Learning for Language

(Mikolov et al. 2013; Pennington et al. 2014) 12



Hidden Markov Models (Baum & Petrie 1966)
Recurrent Neural Networks (Williams, Hinton, & Rumelhart 1986)
Neural Autoregressive Distribution Estimator (Larochelle et al. 2011)

Autoregressive Modeling

(Larochelle et al. 2011) 13



Self-organizing neural networks Siamese networks
(Becker & Hinton 1992) Bromley et al. (1994)

Siamese Networks
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Multidimensional scaling (MDS; Cox et al. 1994)
Locally linear embedding (LLE; Roweis et al. 2000)

Multiple Instance Learning & Metric Learning
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Metric learning (Xing et al. 2002)

Multiple Instance Learning & Metric Learning

N-pair loss (Sohn 2016)

Triplet loss (Schroff et al. 2015)

Contrastive Loss (Chopra & Hadsell et al. 2005)
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Restricted Boltzmann Machines

Autoregressive Modeling

Early Work: Connecting the Dots

Word2Vec

Multiple Instance/Metric Learning

Autoencoders

Siamese networks
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Methods
● Self-prediction
● Contrastive learning
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Self-prediction: Given an individual data sample, the task is to predict one part of the 
sample given the other part.  

The part to be predicted pretends to be missing.

Methods for Framing Self-Supervised Learning Tasks

?

“Intra-sample” prediction
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Contrastive learning: Given multiple data samples, the task is to predict the 
relationship among them.

The multiple samples can be selected from the dataset based on some known logics 
(e.g. the order of words / sentences), or fabricated by altering the original version.

Methods for Framing Self-Supervised Learning Tasks

relationship?

“Inter-sample” prediction
20



Methods: Self-Prediction
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Self-prediction construct prediction tasks within every individual data sample: to 
predict a part of the data from the rest while pretending we don’t know that part.

Self-Prediction

(Famous illustration from Yann LeCun)
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Self-prediction construct prediction tasks within every individual data sample: to 
predict a part of the data from the rest while pretending we don’t know that part.

1. Autoregressive generation
2. Masked generation
3. Innate relationship prediction
4. Hybrid self-prediction

Self-Prediction

23



The autoregressive model predicts future behavior based on past behavior. Any data 
that comes with an innate sequential order can be modeled with regression.

Examples:
● Audio (WaveNet, WaveRNN)
● Autoregressive language modeling (GPT, XLNet)
● Images in raster scan (PixelCNN, PixelRNN, iGPT)

Self-Prediction: Autoregressive Generation

? ?
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We mask a random portion of information and pretend it is missing, irrespective of the 
natural sequence. The model learns to predict the missing portion given other 
unmasked information.

Examples:
● Masked language modeling (BERT)
● Images with masked patch (denoising autoencoder, context autoencoder, 

colorization)

Self-Prediction: Masked Generation

? ??
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Some transformation (e.g. segmentation, rotation) of one data sample should 
maintain the original information or follow the desired innate logic. 

Examples:
● Order of image patches (e.g., relative position, jigsaw puzzle)
● Image rotation
● Counting features across patches

Self-Prediction: Innate Relationship Prediction

1

3

2

4
1 32 4=♥ ♥
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VQ-VAE + AR
● Jukebox (Dhariwal et al. 2020), DALL-E (Ramesh et al. 2021)

VQ-VAE + AR + Adversarial
● VQGAN (Esser & Rombach et al.2021)

Self-Prediction: Hybrid Self-Prediction Models
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Methods: Contrastive Learning
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The goal of contrastive representation learning is to learn such an embedding space in 
which similar sample pairs stay close to each other while dissimilar ones are far apart.

Contrastive Learning

After learning
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The goal of contrastive representation learning is to learn such an embedding space in 
which similar sample pairs stay close to each other while dissimilar ones are far apart.

1. Inter-sample classification
2. Feature clustering
3. Multiview coding

Contrastive Learning
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Contrastive Learning: Inter-Sample Classification

Given both similar (“positive”) and dissimilar (“negative”) candidates, to identify which 
ones are similar to the anchor data point is a classification task.

There are creative ways to construct a set of data point candidates:
1. The original input and its distorted version
2. Data that captures the same target from different views
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Common loss functions:

● Contrastive loss (Chopra et al. 2005)
● Triplet loss (Schroff et al. 2015; FaceNet)
● Lifted structured loss (Song et al. 2015)
● Multi-class n-pair loss (Sohn 2016)
● Noise contrastive estimation (“NCE”; Gutmann & Hyvarinen 2010)
● InfoNCE (van den Oord, et al. 2018)
● Soft-nearest neighbors loss (Salakhutdinov & Hinton 2007, 

Frosst et al. 2019)

Contrastive Learning: Inter-Sample Classification
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Contrastive loss (Chopra et al. 2005): Works with labelled dataset.

Encodes data into an embedding vector such that examples from the same class have 
similar embeddings and samples from different classes have different ones.

Given two labeled data pairs              and               :

Contrastive Learning: Inter-Sample Classification

minimize maximize
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Triplet loss (Schroff et al. 2015): learns to minimize the distance between the anchor x 
and positive x+ and maximize the distance between the anchor x and negative x- at the 
same time.

Given a triplet input                   ,

Contrastive Learning: Inter-Sample Classification

(Schroff et al. 2015)
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N-pair loss (Sohn 2016) generalizes triplet loss to include comparison with multiple 
negative samples.

Given one positive and N-1 negative samples, 

Contrastive Learning: Inter-Sample Classification
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Lifted structured loss (Song et al. 2015): utilizes all the pairwise edges within one 
training batch for better computational efficiency.

Contrastive Learning: Inter-Sample Classification

(Song et al. 2015)

where

set of positive pairs

set of negative pairs
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Noise Contrastive Estimation (NCE) (Gutmann & Hyvarinen 2010) runs logistic 
regression to tell apart the target data from noise.

Given target sample distribution p and noise distribution q,

Contrastive Learning: Inter-Sample Classification

where logit

sigmoid

just cross entropy
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InfoNCE (van den Oord, et al. 2018): uses categorical cross-entropy loss to identify the 
positive sample amongst a set of unrelated noise samples.

Given a context vector c, the positive sample should be drawn from the conditional 
distribution p(x|c), while N−1 negative samples are drawn from the proposal 
distribution p(x), independent from the context c.

The probability of detecting the positive sample correctly is:

Contrastive Learning: Inter-Sample Classification

where the density function is 

38



Soft-Nearest Neighbors Loss (Frosst et al. 2019) extends the loss function to include 
multiple positive samples given known labels.

Given a batch of samples                       ,

Contrastive Learning: Inter-Sample Classification

temperature term
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Find similar data samples by clustering them with learned features.
Core idea: Use clustering algorithms to assign pseudo labels to samples such that we 
can run intra-sample contrastive learning.

Examples: DeepCluster (Caron et al 2018); InterCLR (Xie et al 2021)

Contrastive Learning: Feature Clustering

Clustering

Contrastive style classification
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Apply the InfoNCE objective to two or more different views of input data

Became a mainstream contrastive learning method:
● AMDIM (Bachman et al. 2019)
● Contrastive multiview coding (CMC; Tian et al. 2019)
● And many, many more!

Contrastive Learning: Multiview Coding
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“Views” can be from paired inputs from two or more modalities
● CLIP (Radford et al. 2021), ALIGN (Jia et al. 2021): enables zero-shot classification, 

cross-modal retrieval, guided image generation.
● CodeSearchNet (Husain et al 2019): contrast learning between text and code.

Contrastive Learning Between Modalities
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Pretext Tasks

● Vision
● Video
● Audio
● Multimodal
● Language
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Step 1: Pre-train a model for a pretext task Step 2: Transfer to applications

Recap: Pretext Tasks
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Pretext Tasks: Taxonomy

45



Auto-Encoding Variational Bayes  (Kingma et al. 2014)

Image Pretext Tasks: Variational Autoencoders

(Kingma et al. 2014)
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Jointly train an encoder, additional to the usual GAN (Goodfellow et al. 2014):
- Bidirectional GAN (BiGAN; Donahue et al. 2016)
- Adversarially Learned Inference (ALI; Dumoulin et al. 2016)

GAN inversion: learning encoder post-hoc and/or optimizing for given image

Image Pretext Tasks: Generative Adversarial Networks
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● Neural autoregressive density estimation (NADE; Larochelle et al. 2011)
● PixelRNN, PixelCNN (Oord et al. 2016)
● Image GPT (Chen et al. 2020)

Vision Pretext Tasks: Autoregressive Image Generation

Raster scan order Image GPT (Chen et al. 2020)
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Diffusion modeling: Follows a Markov chain of diffusion steps to slowly add random 
noise to data and then learn to reverse the diffusion process to construct desired data 
samples from the noise. (Sohl-Dickstein et al 2015; Yang & Ermon 2019; Ho et al. 2020; 
Dhariwal & Nichol 2021)

Vision Pretext Tasks: Autoregressive Image Generation

Diffusion modeling

(Dhariwal & Nichol 2021) 49



● Denoising autoencoder (Vincent et al. 2008)
○ Add noise = Randomly mask some pixels
○ Only reconstruction loss

● Context autoencoder (Pathak et al. 2016)
○ Mask a random region in the image
○ Reconstruction loss +  adversarial loss 

Vision Pretext Tasks: Masked Prediction
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● Colorization (Zhang et al. 2016)
○ Predict the binned CIE Lab color space 

given a grayscale image.

● Split-brain autoencoder (Zhang et al. 2017)
○ Predict a subset of color channels 

from the rest of channels.
○ Channels: luminosity, color, depth, etc.

Vision Pretext Tasks: Colorization and More
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● Learn the relationship among image patches:
○ Predict relative positions between patches (Doersch et al 2015)
○ Jigsaw puzzle using patches (Noroozi & Favaro 2016)

Vision Pretext Tasks: Innate Relationship Prediction

1 2

876

4 5

3

Given a patch, predict which one of 8 
neighboring locations another patch is in

Output a probability vector per patch index 
out of a predefined set of permutations
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● RotNet: predict which rotation is applied (Gidaris et al. 2018)
○ Rotation does not alter the semantic content of an image.

● Representation Learning by Learning to Count (Noroozi et al. 2017)
○ Counting features across patches without labels, using equivariance of counts

Vision Pretext Tasks: Innate Relationship Prediction

?

)= f( )+f( )f( )+f( )+f(
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Contrastive Predictive Coding (CPC) (van den Oord et al. 2018)
● classify the “future” representation amongst a set of unrelated “negative” samples

Contrastive Predictive Coding and InfoNCE

A density function to preserve 
the mutual information between
         and 

The InfoNCE loss

(van den Oord et al. 2018) 54



● Exemplar CNN (Dosovitskiy et al. 2014)
● Instance-level discrimination (InstDisc; Wu et al. 2018)

○ Each instance is a distinct class of its own: # classes = # training samples

○ Non-parametric softmax that compares features: 

○ Memory bank for storing representations of past samples, 

Vision Pretext Tasks: Inter-Sample Classification

(Wu et al. 2018) 55



The common approach is to make multiple views (e.g. data augmentation) to one 
image and consider the image and its distorted version as similar pairs, while 
different images are treated dissimilar.

Vision Pretext Tasks: Contrastive Learning

“View” 1

similar

dissimilar

“View” 2
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Augmented Multiscale Deep InfoMax
(AMDIM; Bachman et al. 2019)
● Views from different augmentations

Contrastive Multiview Coding
(CMC; Tian et al. 2019)
● Multiple views from different channels

Pretext-Invariant Representation Learning
(PIRL; Misra et al. 2019)
● Jigsaw transformation

Vision Pretext Tasks: Data Augmentation and Multiple Views

(Misra et al. 2019)

(Tian et al. 2019)
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MoCo (Momentum Contrast; He et al. 2019)
● Memory bank is a FIFO queue now
● The target features are encoded using a momentum encoder
● MoCo v2 (Chen et al. 2020): MLP projection head & stronger data augmentation
● MoCo v3 (Chen et al. 2021): Vision Transformer, in-batch negatives

Vision Pretext Tasks: Inter-Sample Classification

(In-batch negatives in MoCo V3)

(He et al. 2019)
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SimCLR (Simple framework for Contrastive Learning of visual Representations)
● Contrastive learning loss
● SimCLR (Chen et al. 2020 Feb)

○ f(.) - base encoder
○ g(.) - projection head layer
○ In-batch negative samples

● SimCLRv2 (Chen et al. 2020 Jun)
○ Larger ResNet models
○ Deeper g(.)
○ Memory bank

Vision Pretext Tasks: Inter-Sample Classification

(Chen et al. 2020) 59



Barlow Twins (Zbontar et al. 2021)
● Learn to make the cross-correlation matrix between two output features for two 

distorted version of the same sample close to the identity.

Vision Pretext Tasks: Inter-Sample Classification

(Zbontar et al. 2021)
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Learn similarity representations for different augmented views of the same sample, but 
no contrastive component involving negative samples.

● Minimize L2 distance between online and target features

● Bootstrap Your Own Latent (BYOL; Grill et al. 2020)

○ Momentum-encoded features as the target

● SimSiam (Chen & He 2020)

○ No momentum encoder

○ Large batch size unnecessary

● BatchNorm seems to be playing an important role

Vision Pretext Tasks: Non-Contrastive Siamese Networks

(Chen & He 2020) 61



● DeepCluster (Caron et al. 2018): Iteratively clusters features via k-means and uses 
cluster assignments as pseudo labels to provide supervised signals.

● Online DeepCluster (Zhan et al. 2020): Performs clustering and network update 
simultaneously rather than alternatingly.

● Prototypical Cluster Learning (PCL; Li et al. 2020): Online EM for clustering, 
combined with InfoNCE for smoothness

Vision Pretext Tasks: Feature Clustering with K-Means

(Zhan et al. 2020)
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● SeLa (Self-Labelling; Asano et al. 2020)
● SwAV (Swapping Assignments between multiple Views; Caron et al. 2020)

○ Implicit clustering via a learned prototype code (“anchor clusters”).
○ Predict cluster assignment in the other column.

Vision Pretext Tasks: Feature Clustering with Sinkhorn-Knopp

(Caron et al. 2020)
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● InterCLR (Xie et al. 2020): Inter-sample contrastive pairs are constructed 
according to pseudo labels obtained by clustering.

● Divide and Contrast (Tian et al. 2021): Train expert models on the clustered 
datasets and then distill the experts into a single model.

Vision Pretext Tasks: Feature Clustering to Improve SSL

(Tian et al. 2021) 64



NNCLR (Dwibedi et al. 2021)
● Contrast with the nearest neighbors in the embedding space
● Allows for lighter data augmentation for views

Vision Pretext Tasks: Nearest-Neighbor

(Dwibedi et al. 2021)
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● Combine supervised loss + self-supervised learning
○ Self-supervised semi-supervised learning (S4L; Zhai et al 2019)
○ Unsupervised data augmentation (UDA; Xie et al 2019)

● Use known labels for contrastive learning
○ Supervised Contrastive Loss (SupCon; Khosla et al. 2021)

Vision Pretext Tasks: Combining with Supervised Loss

(Khosla et al. 2021)
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Pretext Tasks: Taxonomy
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Most image pretext tasks can be applied to videos. However, with an additional time 
dimension, much more information about the video shot configuration or the physical 
world can be extracted from videos.

● Predicting object movements
● 3D motion of camera

Video Pretext Tasks: Innate Relationship Prediction
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Tracking object movement tracking in time 

● Tracking movement of image patches
(Wang & Gupta 2016)

Video Pretext Tasks: Optical Flow 

● Segmenting based on motion 
(Pathak et al. 2017)
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● Temporal order verification (Misra et al. 2016, Fernando et al. 2017)

● Predict the arrow of time, forward or backward (Wei et al. 2018)

Video Pretext Tasks: Sequence Ordering 

(Misra et al. 2016) (Fernando et al. 2017)
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Tracking emerges by colorizing videos (Vondrick et al. 2018)
● Copy colors from a reference frame to another target frame in grayscale by 

leveraging the natural temporal coherence of colors across video frames.

Video Pretext Tasks: Colorization 

(Vondrick et al. 2018) 71



Tracking emerges by colorizing videos (Vondrick et al. 2018)
● Used for video segmentation or human pose estimation without fine-tuning!

Video Pretext Tasks: Colorization

(Vondrick et al. 2018)
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TCN (Sermanet et al. 2017)
● Use triplet loss
● Different viewpoints at the same 

timestep of the same scene should share 
the same embedding, while embedding 
should vary in time, even of the same 
camera viewpoint.

Multi-frame TCN (Dwibedi et al. 2019) 
● Use n-pairs loss
● Multiple frames are aggregated into one 

embedding.

Video Pretext Tasks: Contrastive Multi-View Learning

(Sermanet et al. 2017)
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● Predicting videos with VQ-VAE (Walker et al. 2021)
● VideoGPT: Video generation using VQ-VAE and Transformers (Yan et al. 2021)

Video Pretext Task: Autoregressive Generation

(Walker et al. 2021)
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Jukebox (Dhariwal et al. 2020)

Audio Pretext Task: Autoregressive Modeling
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Jukebox (Dhariwal et al. 2020)

Audio Pretext Task: Autoregressive Modeling
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TagBox (Manilow et al. 2021)
● Source separation by steering 

Jukebox’ latent space 

CALM (Castellon et al. 2021)
● Jukebox representation for MIR tasks

Audio Pretext Task: Autoregressive Modeling
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COLA (Saeed et al. 2021) assigns high similarity between audio clips extracted from 
the same recording and low similarity to clips from different recordings.

Multi-Format audio contrastive learning (Wang & van den Oord 2021) assigns high 
similarity between the raw audio format and the corresponding spectral representation.

Audio Pretext Tasks: Contrastive Learning

waveform

spectrogram

(Saeed et al. 2021) 78



Wav2Vec 2.0 (Baevski et al. 2020) HuBERT (Hsu et al. 2021)

Also employed by SpeechStew (Chan et al. 2021), BigSSL (Zhang et al. 2021)

Audio Pretext Task: Masked Language Modeling for ASR
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● MIL-NCE (Miech et al. 2020)
○ Find matching narration with video

● CLIP (Radford et al. 2021), ALIGN (Jia et al. 2021)
○ Contrast text and image embeddings from paired data

Multimodal Pretext Tasks

(Miech et al. 2020)
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Pretrained language models: They all rely on unsupervised text and try to predict one 
sentence from the context. 

● GPT: Autoregressive; predict the next token based on the previous tokens. 
● BERT: Masked language modeling (MLM) & Next sentence prediction (NSP) 
● ALBERT: Sentence order prediction (SOP)
● ELECTRA: Replaced token detection (RTD) 

Language Pretext Tasks: Generative Language Modeling
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Skip-thought vectors (Kiros et al. 2015)
● Predict sentences based on other sentences around.

Quick-thought vectors (Logeswaran & Lee 2018)
● Identify the correct context sentence among other contrastive sentences.

Language Pretext Tasks: Sentence Embedding

(Quick-thought vectors; 
Logeswaran & Lee 2018)
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IS-BERT (“Info-Sentence BERT”; Zhang et al. 2020)
● mutual information maximization

SimCSE (“Simple Contrastive learning of Sentence Embeddings”; Gao et al. 2021)
● Predict a sentence from itself with only dropout noise.
● One sentence gets two different versions of dropout augmentations.

Language Pretext Tasks: Sentence Embedding
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Most of the models for learning sentence embedding relies on supervised NLI (Natural 
Language Inference) datasets, such as SBERT (Reimers & Gurevych 2019), BERT-flow 
(Li et al. 2020), Whitening SBERT (Su et al. 2021).

Unsupervised sentence embedding models (e.g. unsupervised SimCSE) still have 
performance gap with the supervised version (e.g. supervised SimCSE).

Language Pretext Tasks: Sentence Embedding
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Techniques
● Data augmentation
● In-batch negative samples
● Hard negative mining
● Memory bank
● Large batch size
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Data augmentation setup is critical for learning good embedding. 

It introduces the non-essential variations into examples without modifying 
semantic meanings and thus encourages the model to learn the essential part 
within the representation.

● Image augmentation
● Text augmentation

Techniques: Data Augmentation
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● Basic Image Augmentation
○ Random crop
○ color distortion
○ Gaussian blur
○ color jittering
○ random flip/rotation
○ etc.

● Augmentation Strategies

● Image Mixture

Techniques: Image Augmentation
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● Basic Image Augmentation

● Augmentation Strategies
○ AutoAugment (Cubuk, et al. 2018): inspired by NAS
○ RandAugment (Cubuk et al. 2019): reduces NAS search space in AutoAugment.
○ PBA (Population based augmentation; Ho et al. 2019): evolutionary algorithm
○ UDA (Unsupervised Data Augmentation; Xie et al. 2019): minimize the KL 

divergence between the predicted distribution over an unlabelled example and its 
unlabelled augmented version.

● Image Mixture

Techniques: Image Augmentation

88



● Basic Image Augmentation

● Augmentation Strategies

● Image Mixture
○ Mixup (Zhang et al 2018): weighted pixel-wise combination of two images.
○ Cutmix (Yun et al 2019): mix in a local region of one image into the other.
○ MoCHi (“Mixing of Contrastive Hard Negatives”; Kalantidis et al 2020): mixture of 

hard negative samples.

Techniques: Image Augmentation
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● Lexical Edits
○ EDA (Easy Data Augmentation; Wei & Zou 2019): synonym replacement, random 

insertion/swap/deletion.
○ Contextual Augmentation (Kobayashi 2018): word substitution by BERT prediction.

● Back-translation

● Dropout and Cutoff

Techniques: Text Augmentation
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● Lexical Edits

● Back-translation (Sennrich et al. 2015)
○ Back-translation augments one sentence by first translating it to another language 

and then translating it back to the original language.
○ CERT (Fang et al. 2020) generates augmented sentences via back-translation.

● Dropout and Cutoff

Techniques: Text Augmentation

󰑔 I like to eat white peaches

󰏮 나는 백도를 먹는 것을 좋아한다

󰑔 I like eating white peaches

Translate to Korean

Translate back to English

similar
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● Lexical Edits

● Back-translation

● Dropout and Cutoff
○ SimCSE uses dropout (Gao et al. 2021)
○ Cutoff augmentation for text (Shen et al. 2020): tokens, feature columns, spans.

Techniques: Text Augmentation

(Shen et al 2020)
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Hard negative samples are different to learn. They should have different labels from the 
anchor sample, but the embedding features may be very close.

Hard negative mining is important for contrastive learning.

Challenging negative samples encourages the model to learn better representations 
that can distinguish hard negatives from true positives. 

Hard Negative Mining
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Explicit hard negative mining

● Extract task-specific hard negative samples from labelled datasets.
○ e.g. “contradiction” sentence pairs from NLI datasets. (Most sentence 

embedding papers)
● Keyword based retrieval

○ e.g. BM25 search results (Karpukhin et al. 2020)
● Upweight the negative sample probability to be proportional to its similarity to the 

anchor sample (Robinson et al. 2021)
● MoCHi (Kalantidis et al. 2020): mine hard negative by sorting them according to 

similarity to the query in descending order.

Hard Negative Mining
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Implicit hard negative mining

● In-batch negative samples
● Memory bank (Wu et al. 2018, He et al. 2019) → Increase batch size
● Large batch size via various training parallelism

Hard Negative Mining
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Theories
Why does contrastive learning work?
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InfoNCE (van den Oord et al. 2018) is a 
lower bound to MI between views:

I(v1; v2)  ≥  I(z1; z2)  ≥  log(K) − ℒInfoNCE

Minimizing InfoNCE leads to maximizing 
the MI between view 1 and view 2.

Q: How can we design good views?

Contrastive learning captures shared information between views
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Optimal views are at the sweet spot where it only encodes useful information for transfer
● Minimal sufficient encoder depends on downstream tasks (Tian et al. 2020)
● Composite loss for finding the sweet spot (Tsai et al. 2020)

The InfoMin Principle

(Tian et al. 2020)
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Contrastively learned features are more uniform and aligned.
● Uniform: features should be distributed uniformly on the hypersphere Sd

● Aligned: features from two views of the same input should be the same

Alignment and Uniformity on the Hypersphere

Random init. Supervised Contrastive 99



Contrastive methods sometimes suffer from dimensional collapse (Hua et al. 2021)
● Features span lower-dimensional subspace instead

Two causes demonstrated by Jing et al. (2021)
● Strong augmentation & implicit regularization

Dimensional Collapse

(Jing et al. 2021)

Complete Collapse Dimensional Collapse 100



Sampling complexity decreases when:
● Adopting contrastive learning objectives (Arora et al. 2019)
● Predicting the known distribution in the data (Lee et al. 2020)

Linear classifier on learned representation is nearly optimal (Tosh et al. 2021)

Spectral Contrastive Learning (HaoChen et al. 2021)

Provable Guarantees for Contrastive Learning
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Future directions
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● Large batch size →  improved transfer performance.
● High-quality large data corpus → Better performance.

○ Learning from synthetic or Web data.
○ Measuring dataset quality and filtering / active learning

● Efficient negative sample selection.
● Combine multiple pretext tasks.

○ How to combine
○ Best strategies

Future Directions
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● Data augmentation tricks have critical impacts but are still quite ad-hoc
○ Modality-dependent
○ Theoretical foundations

● Improving training efficiency 
○ Self-supervised learning methods are pushing the deep learning arms race
○ Direct impacts on the economical and environmental costs

● Social biases in the embedding space.
○ Early work in debiasing word embedding.
○ Biases in Dataset

Future Directions
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Thank You
Visit openai.com for more information.

FOLLOW @OPENAI ON TWITTER
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