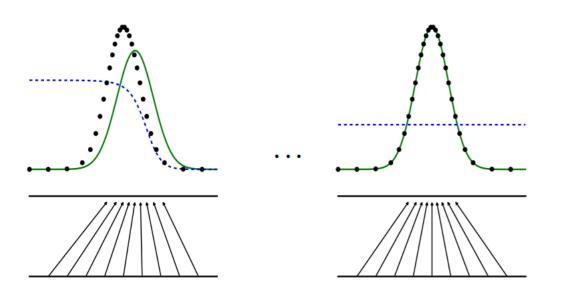


Implicit Posterior Variational Inference for Deep Gaussian Processes (IPVI DGP)

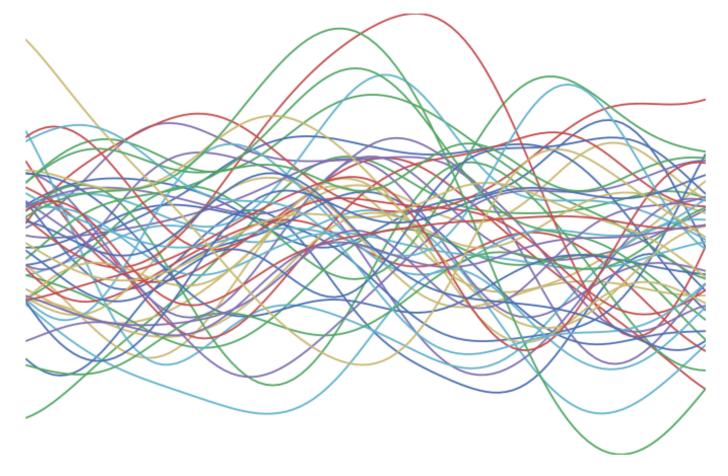


Haibin Yu*, Yizhou Chen*
Zhongxiang Dai
Bryan Kian Hsiang Low and Patrick Jaillet
Department of Computer Science
National University of Singapore
Department of Electrical Engineering and Computer Science
Massachusetts Institute of Technology

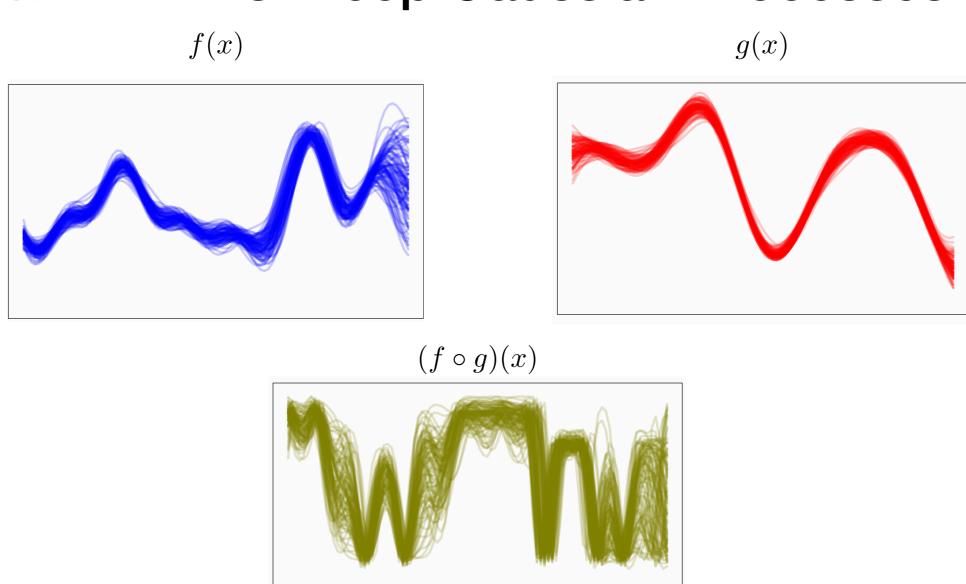
* indicates equal contribution

Gaussian Processes (GP) vs. Deep Gaussian Processes (DGP)

- A GP is fully specified by its kernel function
 - RBF: universal approximator
 - Matern
 - Brownian
 - Linear
 - Polynomial
 - O



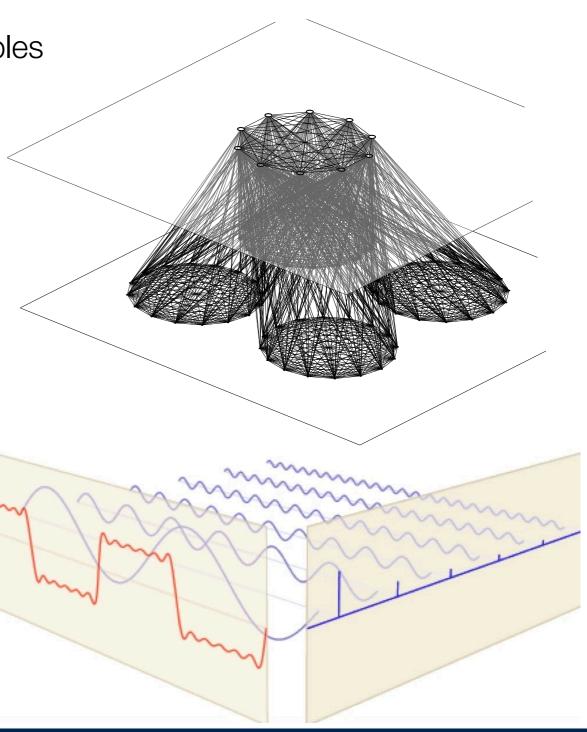
Gaussian Processes (GP) vs. Deep Gaussian Processes (DGP)



Composition of GPs significantly boosts the expressive power

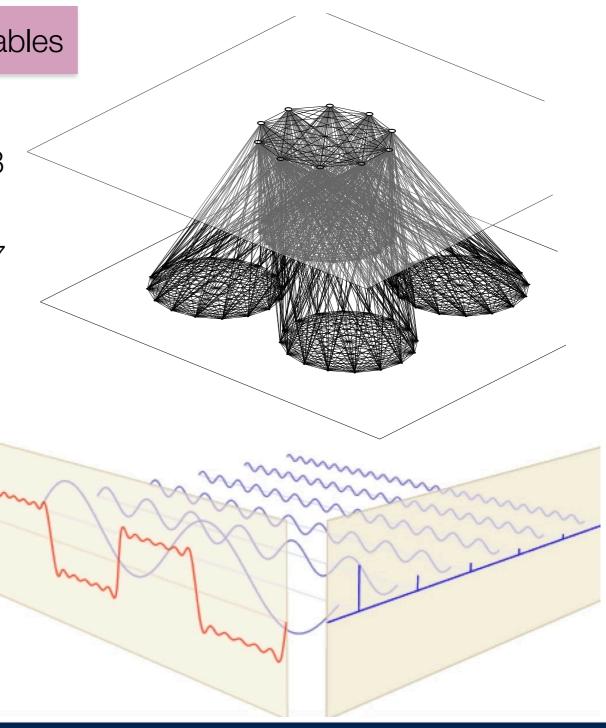
Existing DGP models

- Approximation methods based on inducing variables
 - Variational Inference
 - Damianou and Lawrence, AISTATS, 2013
 - Hensman and Lawrence, arXiv, 2014
 - Salimbeni and Deisenroth, NeurlPS, 2017
 - Expectation Propagation
 - Bui, ICML, 2016
 - MCMC
 - Havasi et al, NeurlPS 2018
- Random feature approximation methods
 - Cutajar et al, ICML 2017



Existing DGP models

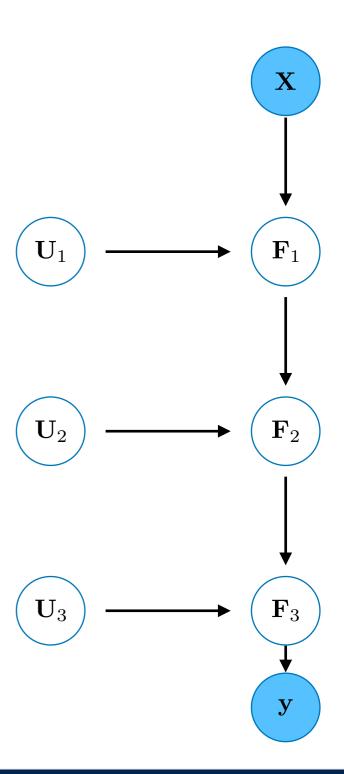
- Approximation methods based on inducing variables
 - Variational Inference
 - Damianou and Lawrence, AISTATS, 2013
 - Hensman and Lawrence, arXiv, 2014
 - Salimbeni and Deisenroth, NeurlPS, 2017
 - Expectation Propagation
 - Bui, ICML, 2016
 - MCMC
 - Havasi et al, NeurlPS 2018
- Random feature approximation methods
 - Cutajar et al, ICML 2017



Deep Gaussian Processes (DGP)

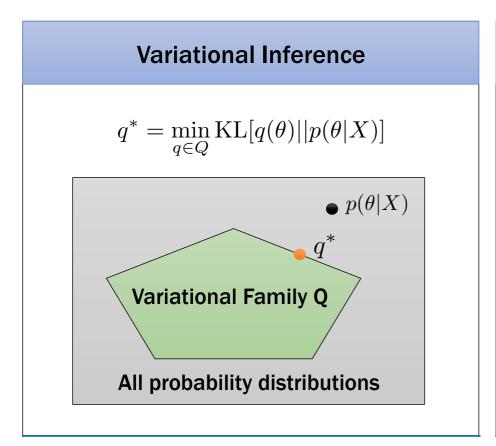
- Input X
- Output y
- Inducing variables $\mathcal{U} = \{\mathbf{U}_1, \dots, \mathbf{U}_L\}$

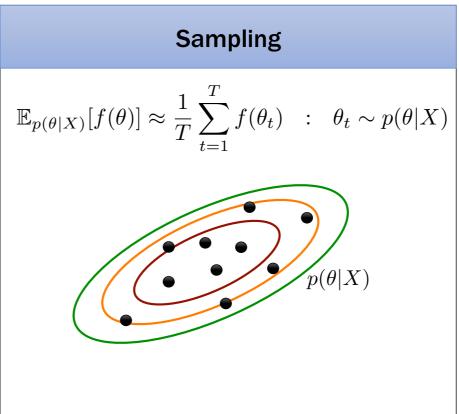
• Posterior $p(\mathcal{U}|\mathbf{y})$ is intractable!



DGP Inference

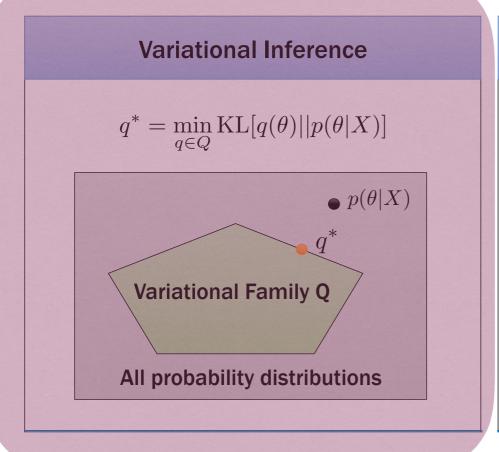
Exact inference is intractable in DGP

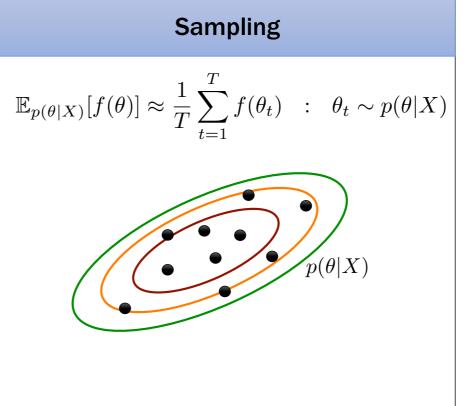




DGP Inference: Variational Inference

Exact inference is intractable in DGP



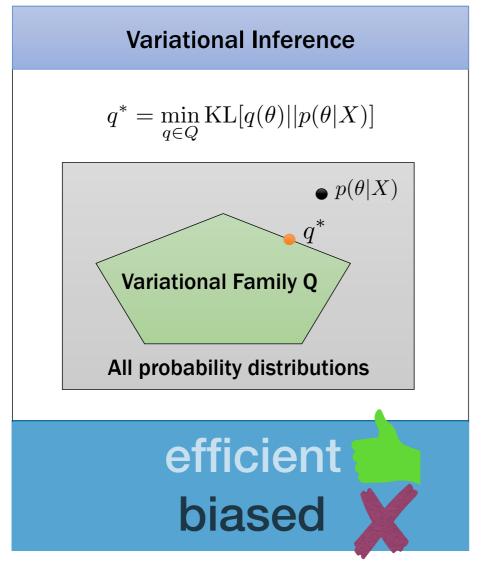


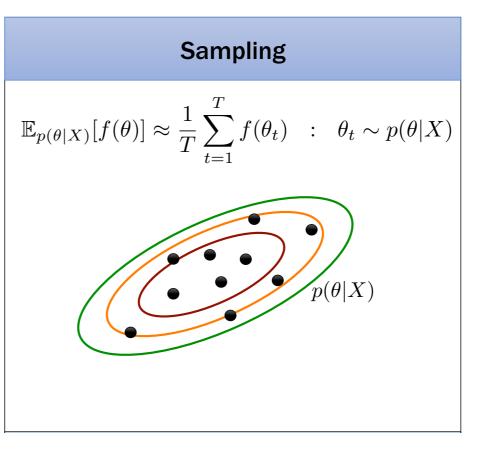
Variational Inference

Gaussian approximation

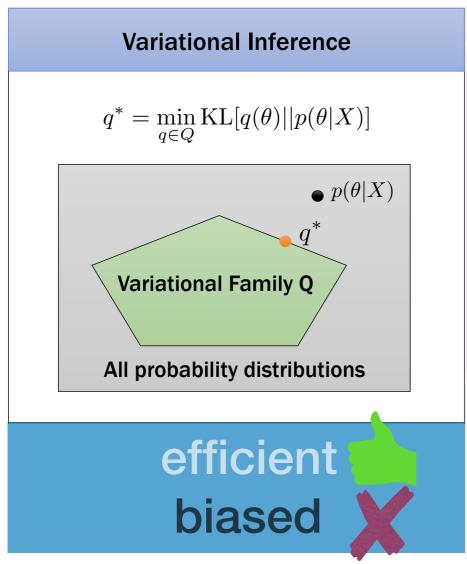
Mean field approximation

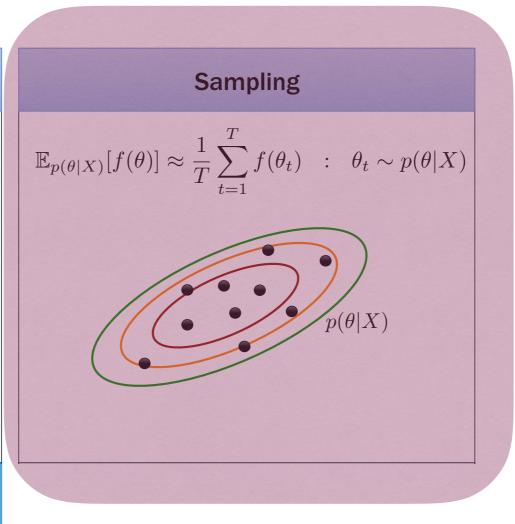
DGP Inference: Variational Inference



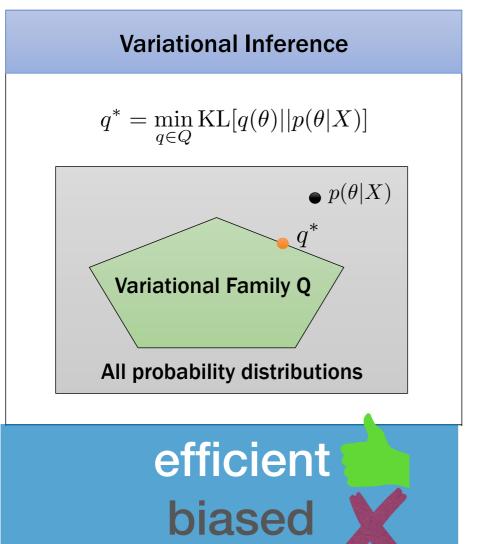


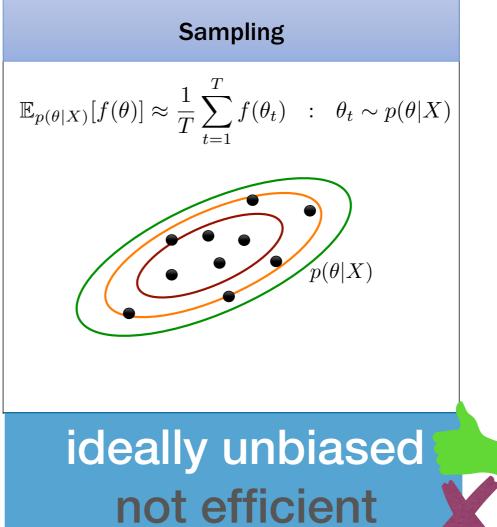
DGP Inference: Sampling



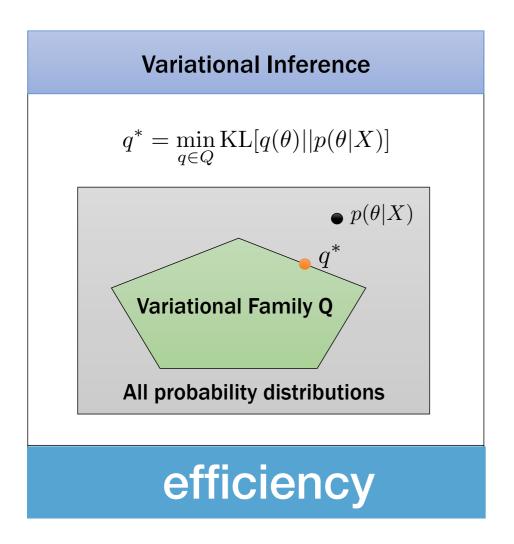


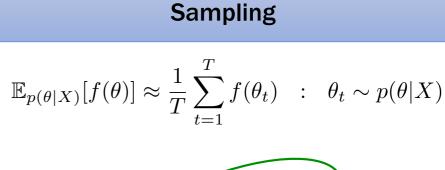
DGP Inference: Sampling

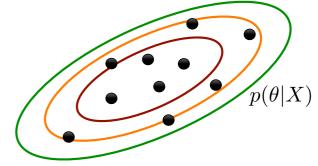




JS DGP: Variational Inference vs. Sampling





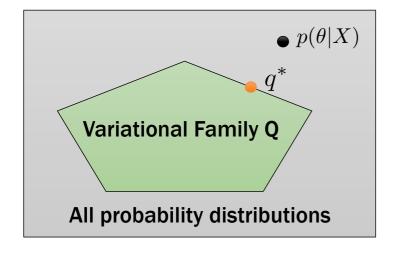


ideally unbiased

DGP: Variational Inference vs. Sampling

Variational Inference

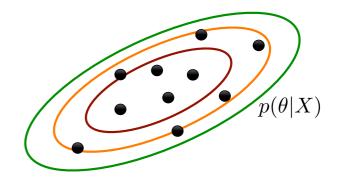
$$q^* = \min_{q \in Q} \mathrm{KL}[q(\theta)||p(\theta|X)]$$



efficiency

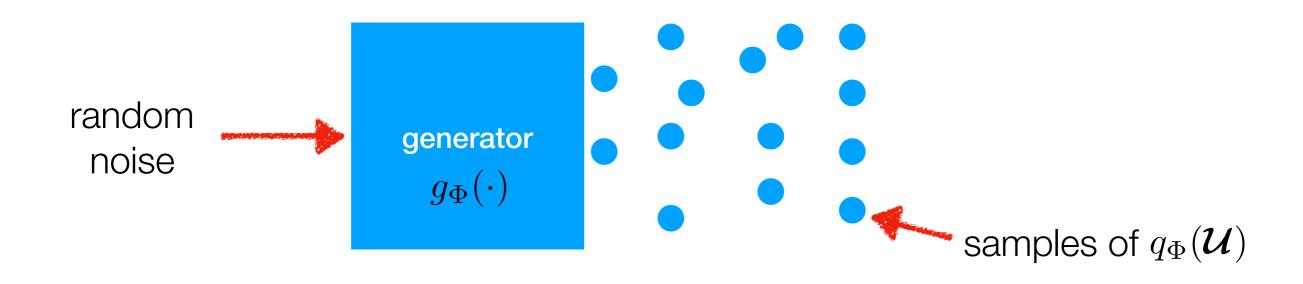
Sampling

$$\mathbb{E}_{p(\theta|X)}[f(\theta)] \approx \frac{1}{T} \sum_{t=1}^{T} f(\theta_t) : \theta_t \sim p(\theta|X)$$

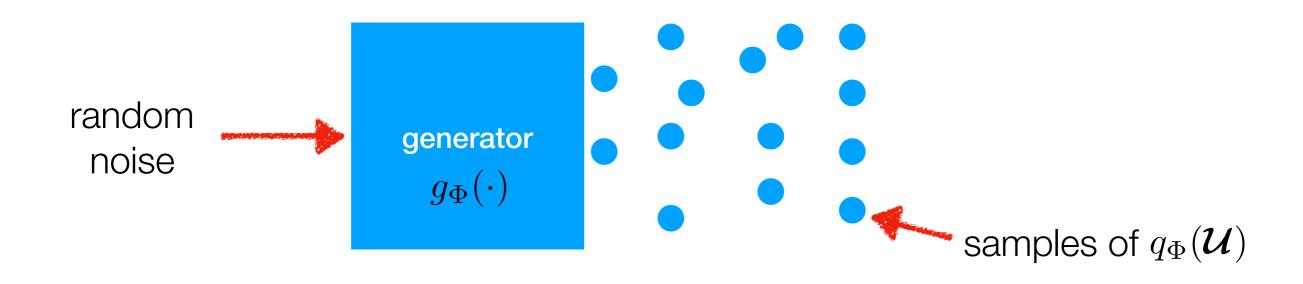


ideally unbiased

unbiased posterior & efficiency

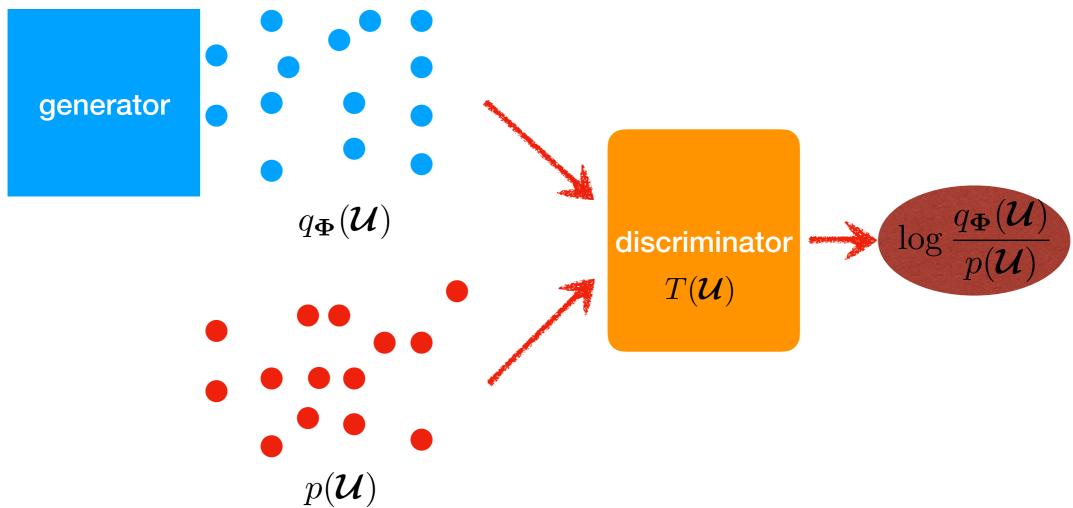


ELBO =
$$\mathbb{E}_{q(\mathbf{F}_L)}[\log p(\mathbf{y}|\mathbf{F}_L)] - \text{KL}[q_{\Phi}(\mathcal{U})||p(\mathcal{U})]$$



ELBO =
$$\mathbb{E}_{q(\mathbf{F}_L)}[\log p(\mathbf{y}|\mathbf{F}_L)] - \text{KL}[q_{\Phi}(\mathcal{U})||p(\mathcal{U})]$$

$$\mathrm{KL}[q_{\Phi}(\mathcal{U}) \| p(\mathcal{U})] = \mathbb{E}_{q_{\Phi}(\mathcal{U})} \left[\log \frac{q_{\Phi}(\mathcal{U})}{p(\mathcal{U})} \right]$$



Proposition 1. The optimal discriminator exactly recovers the log-density ratio

Two-player game

Player [1]:
$$\max_{\{\Psi\}} \mathbb{E}_{p(\mathcal{U})} \left[\log(1 - \sigma(T_{\Psi}(\mathcal{U}))) + \mathbb{E}_{q_{\Phi}(\mathcal{U})} [\log \sigma(T_{\Psi}(\mathcal{U}))] \right],$$
 discriminator

Player [2]:
$$\max_{\{\theta,\Phi\}} \mathbb{E}_{q_{\Phi}(\mathcal{U})} \left[\mathcal{L}(\theta, \mathbf{X}, \mathbf{y}, \mathcal{U}) - T_{\Psi}(\mathcal{U}) \right]$$

generator & DGP hyperparameters

Best-response dynamics (BRD) to search for a Nash equilibrium

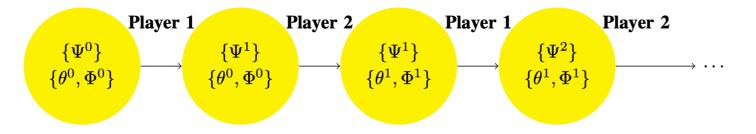
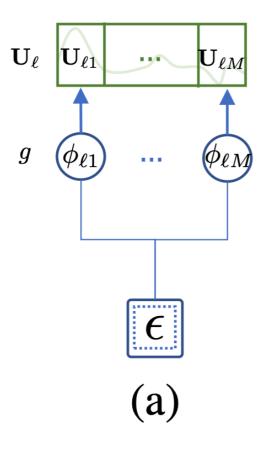


Figure 1: Best-response dynamics (BRD) algorithm

Proposition 2. Nash equilibrium recovers the true posterior $p(\mathcal{U}|\mathbf{y})$

Architecture of the generator and discriminator

Naive design for layer ℓ

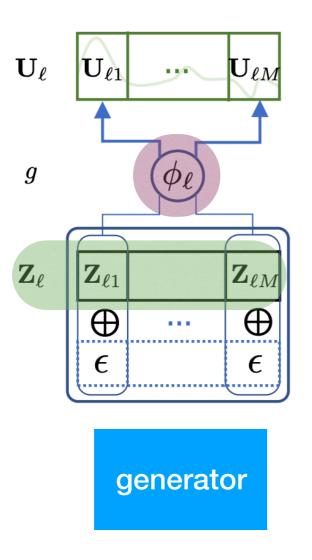


- Fail to adequately capture the dependency of the inducing output variables $\mathcal{U} = \{\mathbf{U}_1, \dots, \mathbf{U}_L\}$ on the corresponding inducing inputs $\mathcal{Z} = \{\mathbf{Z}_1, \dots, \mathbf{Z}_L\}$
- Relatively large number of parameters, resulting in overfitting, optimization difficulty, etc.

generator (naive)

Architecture of Generator and Discriminator for DGP

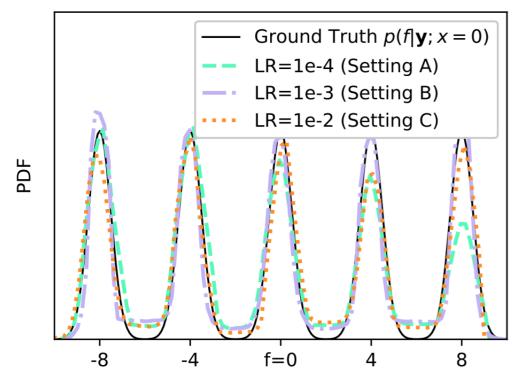
Our parameter-tying design for layer ℓ



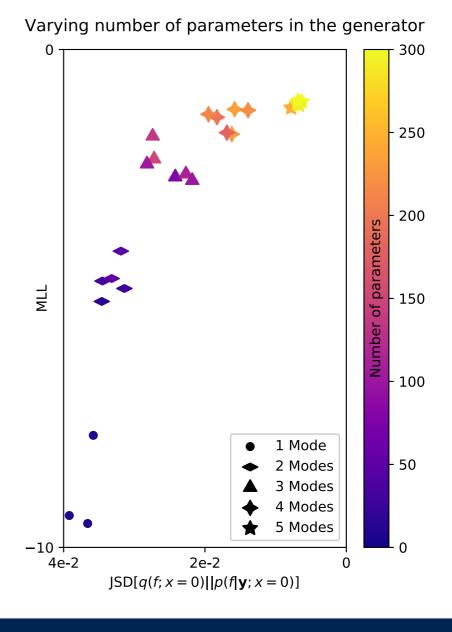
- Concatenates the inducing inputs \mathbf{Z}_ℓ
- Posterior samples are generated based on single shared parameter setting ϕ_{ℓ}

- Metric for evaluation
 - MLL (mean log likelihood)
- Algorithms for comparison
 - DSVI DGP: Doubly stochastic variational inference DGP [Salimbeni and Deisenroth, 2017]
 - SGHMC DGP: Stochastic gradient Hamilton Monte Carlo DGP [Havasi et al, 2018]

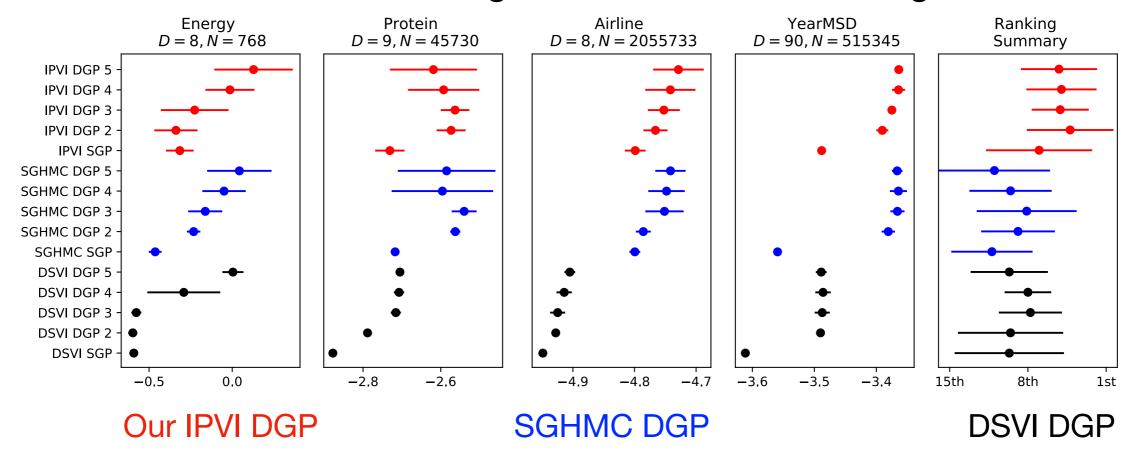
Synthetic Experiment: Learning a Multi-Modal Posterior Belief



- IPVI is robust under different hyperparameter settings
- Expressive power of IPVI increases as the number of parameters in the generator increase



MLL on UCI Benchmark Regression & Real World Regression



Our IPVI DGP generally performs the best.

Mean test accuracy (%) for 3 classification datasets

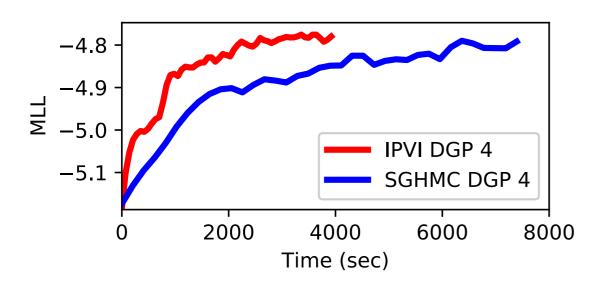
Dataset	MNIST		Fashion-MNIST		CIFAR-10	
	SGP	DGP 4	SGP	DGP 4	SGP	DGP 4
DSVI	97.32	97.41	86.98	87.99	47.15	51.79
SGHMC	96.41	97.55	85.84	87.08	47.32	52.81
\mathbf{IPVI}	97.02	97.80	87.29	88.90	48.07	53.27

Our IPVI DGP generally performs the best.

Time Efficiency

	IPVI	SGHMC
Average training time (per iter.)	0.35 sec.	3.18 sec.
\mathcal{U} generation (100 samples)	0.28 sec.	143.7 sec.

Time incurred by sampling from a 4-layer DGP model for Airline dataset.



MLL vs. total incurred time to train a 4-layer DGP model for the Airline dataset.

IPVI is much faster than SGHMC in terms of training as well as sampling.

Conclusion

- A novel IPVI DGP framework
 - Can ideally recover an unbiased posterior belief.
 - Preserve time efficiency.
- Cast the DGP inference into a two-player game
 - Search for Nash equilibrium using BRD
- Parameter-tying architecture
 - Alleviate overfitting
 - Speed up training and prediction
- More details of our paper
 - Detailed architecture of generator and discriminator.
 - Detailed analysis of our BRD algorithm.
 - More experimental results.