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A GP is fully specified by its kernel function

RBF: universal approximator 
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Deep Gaussian Processes for Large Representational Power

• Bypassing kernel design through composition of processes

(f � g)(x)??

Neal, LNS, 1996 – Damianou and Lawrence, AISTATS, 2013
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Deep Gaussian Processes for Large Representational Power

• Composition of stationary processes yields something very

complex
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θ(1) X 

F(2) 

θ(2) 

Neal, LNS, 1996 – Damianou and Lawrence, AISTATS, 2013 – Duvenaud et al., AISTATS, 2014 15

f(x) g(x)

(f � g)(x)

 Composition of GPs significantly boosts the expressive power

Gaussian Processes (GP)  
vs. Deep Gaussian Processes (DGP)
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• Approximation methods based on inducing variables 

• Variational Inference 
• Damianou and Lawrence, AISTATS, 2013 
• Hensman and Lawrence, arXiv, 2014 
• Salimbeni and Deisenroth, NeurIPS, 2017 

• Expectation Propagation 

• Bui, ICML, 2016 
• MCMC 

• Havasi et al, NeurIPS 2018

• Random feature approximation methods 

• Cutajar et al, ICML 2017

Existing DGP models
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Posterior             is intractable!p(U |y)
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Deep Gaussian Processes (DGP)
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Exact inference is intractable in DGPBayesian Posterior Inference


Variational Inference Sampling 

q⇤ = min
q2Q

KL[q(✓)||p(✓|X)]

Variational Family Q 

p(✓|X)

q⇤

All probability distributions 

Ep(✓|X)[f(✓)] ⇡
1

T

TX

t=1

f(✓t) : ✓t ⇠ p(✓|X)

p(✓|X)

 
 

•  Determinis*c	
•  Biased		
•  Local	minima	
•  Easy	to	assess	convergence	

•  Stochas*c	(sample	error)	
•  Unbiased	
•  Hard	to	mix	between	modes	
•  Hard	to	assess	convergence	
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1. biased 
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3. simplicity 
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 Variational Inference

 Gaussian approximation       

 Mean field approximation 
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Implicit Posterior Variational Inference

generator

samples of

Following the same VI technique which renders the ELBO similar to the single layer GP in Eq. 3, the
ELBO can be written as:

ELBO =

Z
q(FL) log p(y|FL)dFL � KL[q(U)||p(U)], (6)

where q(FL) =
R QL

l=1 p(Fl|Ul,Fl�1)q(U)dF1 . . . dFL�1dU3.

3 Implicit Posterior Variational Inference Deep Gaussian Process (IPVI
DGP)

VI utilizes a distribution from the variational family to approximate the posterior distribution. In the
context of DGP, common variational inference methods adopt two restrictive assumptions including
(1) the mean field assumption q(U) =

R QL
l=1 q(Ul) and (2) the Gaussian assumption on q(Ul).

The intention for this section is to discard these two assumptions. We seek to represent the posterior
samples with a black-box generator U = g�(✏) parametrized by �, which transforms the random
input4 ✏ ⇠ N (0, I) to the variational posterior U ⇠ q�(U), allowing the re-write of the ELBO in
Eq. 6:

ELBO = Eq(F
L

)[log p(y|FL)] � KL [q�(U)||p(U)] . (7)

However, representing the posterior approximation implicitly makes it impossible to evaluate the
KL divergence in Eq. 7 because we cannot explicitly calculate q�(U). Having noticed that the KL
divergence is the calculation of the expectation of log density ratio Eq�(U)[log q�(U) � log p(U)],
our approach circumvents the explicit calculation of the KL term by implicitly representing the log
density ratio as the output value of an additional function T (·). Proposition 1 details our approach.
Proposition 1. Consider the following maximization problem where �(x) = 1

1+e�x

:

max
T

Ep(U) [log(1 � �(T (U))] + Eq�(U)[log �(T (U))]. (8)

For p(U) and q�(U) fixed, the optimal T ⇤ with respect to Eq. 8 is equal to the log density ratio

T ⇤(U) = log q�(U) � log p(U). (9)

The proof of our Proposition 1 is analogous to the proof of Proposition 1 in Goodfellow et al. [9]
with details in Appendix A.

Remark 1. Eq. 8 defines the binary cross entropy between samples from the prior and posterior.
Intuitively, T (U) in Eq. 8 tries to distinguish between q�(U) and p(U) by outputting �(T (U)) as
the probability of U being a sample from q�(U). Such T (·) is referred to as the discriminator. With
Proposition 1, the ELBO in Eq. 7 can be re-written as:

ELBO = max
✓,�

Eq�(U) [L(✓,X,y, U) � T ⇤(U)] , (10)

where L(✓,X,y, U) = Ep(F
L

|U)[log p(y|FL)] and ✓ represents the hyperparameters of DGP.

Remark 2. Now ELBO can be calculated given the optimal discriminator. In our implementation,
we adopt a parametric representation of discriminator T . In principle, the parametric representation
is required to be flexible enough to be able to represent the optimal discriminator T ⇤ accurately.
Justified by the fact that deep neural networks are universal function approximators [13], T is
represented by a neural network with parameters  and the optimal T ⇤(·) is parametrized by  ⇤.
Details of the architecture is given in Sec. 3.1.

Remark 3. Theoretically, we want to maintain the optimal T (·) with regards to q�(·) in every inter-
mediate iteration. However such practice is computationally challenging. To ease the computational

3To compute the marginal of last layer latent function q(FL), Salimbeni and Deisenroth [17] proposed the
utilization of ‘re-parameterization’ trick as well as Monte Carlo sampling method, where through out this paper,
we adopt the same method to compute the marginal q(FL).

4Real implementation of g� takes in the concatenation of Z as inputs. Detail illustration on Sec. 3.1

4

random 
noise

q�(U)

g�(·)
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generator

q�(U)

p(U)

discriminator
T (U)

log

q�(U)

p(U)

Proposition 1. The optimal discriminator exactly recovers the log-density ratio
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Player [1]: max

{ }
Ep(U) [log(1� �(T (U))] + Eq�(U)[log �(T (U))],

Player [2]: max

{✓,�}
Eq�(U) [L(✓,X,y,U)� T (U)]

Best-response dynamics (BRD) to search for a Nash equilibrium

Implicit Posterior Variational Inference

Player [1]: max

{ }
Ep(U) [log(1� �(T (U))] + Eq�(U)[log �(T (U))],

Player [2]: max

{✓,�}
Eq�(U) [L(✓,X,y,U)� T (U)]

discriminator

generator DGP 
hyperparameters

&

Two-player game

Proposition 2. Nash 
equilibrium recovers the 
true posterior p(U |y)
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Architecture of the generator and discriminator

Naive design for layer

generator 
(naive)

• Fail to adequately capture the 
dependency of the inducing output  
variables                                on the 
corresponding inducing inputs 


• Relatively large number of parameters, 
resulting in overfitting, optimization 
difficulty, etc.

Z = {Z1, . . . ,ZL}

U = {U1, . . . ,UL}

`



generator

Our parameter-tying design for layer 

• Concatenates the inducing inputs 


• Posterior samples are generated based on single 
shared parameter setting 

Architecture of Generator and 
Discriminator for DGP

`

Z`

�`
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Experimental Results
Metric for evaluation


MLL (mean log likelihood)

Algorithms for comparison

DSVI DGP: Doubly stochastic variational inference DGP [Salimbeni 
and Deisenroth, 2017]

SGHMC DGP: Stochastic gradient Hamilton Monte Carlo DGP 
[Havasi et al, 2018]
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Experimental Results

Synthetic Experiment: Learning a Multi-Modal Posterior Belief 

Chapter 4. Variational Inference for Deep Gaussian Processes

(a)

(d)

Setting JSD MLL
IPVI A (LR= 1e�4) 1.0e�2 -1.15
IPVI B (LR= 1e�3) 8.3e�3 -0.99
IPVI C (LR= 1e�2) 8.6e�3 -1.02
SGHMC A (� = 0.1) 2.1e�2 -2.36
SGHMC B (� = 0.3) 1.2e�2 -1.10
SGHMC C (� = 0.5) 7.5e�2 -2.83

13

(b)

(e) (c)
Figure 4.3: (a) The probability density function (PDF) plot of the ground-truth posterior
belief p(f |y). (b) Performances of IPVI and SGHMC in terms of estimated Jenson-

Shannon divergence (JSD) and mean log-likelihood (MLL) metrics under the respective
settings of varying learning rates –

�

and step sizes ÷. (c) Graph of MLL vs. JSD achieved
by IPVI with varying number of parameters in the generator: Di�erent shapes indicate
varying number of modes learned by the generator. (d-e) PDF plots of variational posterior
q(f ; x = 0) learned using (d) IPVI with generators of varying learning rates –

�

and (e)
SGHMC with varying step sizes ÷.

generators in IPVI use the same architecture with about 300 parameters but di�erent

learning rates –
�

, while the SGHMC samplers use di�erent step sizes ÷. The results in

Figs. 4.3b and 4.3e have verified a remark made in [Zhang et al., 2019] that SGHMC

is sensitive to the step size which cannot be set automatically [Springenberg et al.,

2016] and requires some prior knowledge to do so: Sampling with a small step size is

prone to getting trapped in local modes while a slight increase of the step size may

lead to an over-flattened posterior estimate. In Figure 4.4, we give additional results

for di�erent hyperparameter setting of SGHMC to show that it is likely to obtain a

biased posterior belief.

In contrast, the results in Figs. 4.3b and 4.3d reveal that, given enough parameters,

72

• IPVI is robust under different 
hyperparameter settings


• Expressive power of IPVI increases as 
the number of parameters in the 
generator increase
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Experimental Results

MLL on UCI Benchmark Regression & Real World Regression

Chapter 4. Variational Inference for Deep Gaussian Processes

which means that the accuracy can still be improved further with those additional

tricks.

4.5.2.2 Regression

UCI Benchmark Regression. Our experiments are first conducted on 7 UCI

benchmark regression datasets. We have performed a random 0.9/0.1 train/test split.

Figure 4.5: Mean test log-likelihood and standard deviation achieved by our IPVI frame-
work (red), SGHMC (blue), and DSVI (black) for DGPs for UCI benchmark and large-scale
regression datasets. Higher test log-likelihood (i.e., to the right) is better.

Large-Scale Regression. We then evaluate the performance of IPVI on two

real-world large-scale regression datasets: (a) YearMSD dataset with a large input

dimension D = 90 and data size N ¥ 500000, and (b) Airline dataset with input

dimension D = 8 and a large data size N ¥ 2 million. For YearMSD dataset, we use

75

Our IPVI DGP                      SGHMC DGP                             DSVI DGP

Our IPVI DGP generally performs the best.
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Experimental Results

Mean test accuracy (%) for 3 classification datasets

Chapter 4. Variational Inference for Deep Gaussian Processes

runs, which shows that our IPVI framework for a 4-layer DGP model performs the

best in all three datasets.

Table 4.5: Mean test accuracy (%) achieved by IPVI, SGHMC, and DSVI for 3 classifica-
tion datasets.

Dataset MNIST Fashion-MNIST CIFAR-10
SGP DGP 4 SGP DGP 4 SGP DGP 4

DSVI 97.32 97.41 86.98 87.99 47.15 51.79
SGHMC 96.41 97.55 85.84 87.08 47.32 52.81
IPVI 97.02 97.80 87.29 88.90 48.07 53.27

4.5.3 Unsupervised Learning: FreyFace Reconstruction

A B

reconstruct

(a)

(b)

(c)

Reconstruction from latent representation interpolation

A A A

BB

Figure 4.7: Unsupervised learning with FreyFace dataset. (a) Latent representation in-
terpolation and the corresponding reconstruction. (b) True posterior p(xı|yı

O) given the
partial observation yı

O (left), variational posterior q(xı) learned by IPVI (middle), and
Gaussian approximation (right). The PDF for p(xı|yı

O) is calculated using Bayes rule
where the marginal likelihood is computed using Monte Carlo integration. (c) The partial
observation (with the ground truth reflected in the dark region) and two reconstructed
samples from q(xı).

A DGP can naturally be generalized to perform unsupervised learning. The repre-

sentation of a dataset in a low-dimensional manifold can be learned in an unsupervised

79

Our IPVI DGP generally performs the best.
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Experimental Results

Time Efficiency

Chapter 4. Variational Inference for Deep Gaussian Processes

the overfitting issue considerably.

Meanwhile, Tables 4.2 shows results of the test mean log-likelihood for another

two UCI benchmark regression datasets over 10 runs that are achieved by IPVI with

and without parameter tying. It can be observed that IPVI achieves a considerably

better predictive performance with parameter tying.

Table 4.2: Test mean log-likelihood achieved by our IPVI framework with and without
parameter tying for UCI benchmark regression datasets. Higher mean test log-likelihood
is better.

Dataset Boston Power
DGP Layers 1 2 3 4 5 1 2 3 4 5
No Tying -2.21 -2.37 -2.48 -2.51 -2.57 -2.77 -2.79 -2.74 -2.73 -2.75
Tying -2.09 -2.08 -2.13 -2.09 -2.10 -2.76 -2.69 -2.67 -2.70 -2.71
Dataset Wine Red Protein
DGP Layers 1 2 3 4 5 1 2 3 4 5
No Tying -0.97 -0.94 -0.96 -0.97 -0.98 -2.83 -2.72 -2.69 -2.70 -2.67
Tying -0.84 -0.81 -0.86 -0.86 -0.85 -2.73 -2.57 -2.56 -2.59 -2.62

Time E�ciency. Table 4.3 and Fig. 4.6 show the better time e�ciency of IPVI

over the state-of-the-art SGHMC for a 4-layer DGP model that is trained using the

Airline dataset. The learning rates are 0.005 and 0.02 for IPVI and SGHMC (default

setting adopted from [Havasi et al., 2018]), respectively. Due to parallel sampling

(Section 4.3) and a parameter-tying architecture (Section 4.4), our IPVI framework

enables posterior samples to be generated 500 times faster. Although IPVI has more

parameters than SGHMC, it runs 9 times faster during training due to e�ciency in

sample generation.

Table 4.3: Time incurred by a 4-layer DGP model for Airline dataset.

IPVI SGHMC
Average training time (per iter.) 0.35 sec. 3.18 sec.
U generation (100 samples) 0.28 sec. 143.7 sec.
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Figure 4.6: Graph of MLL vs. total incurred time to train a 4-layer DGP model for the
Airline dataset.

4.5.2.3 Classification

We evaluate the performance of IPVI in three classification tasks using the real-world

MNIST, fashion-MNIST, and CIFAR-10 datasets. Both MNIST and fashion-MNIST

datasets are grey-scale images of 28 ◊ 28 pixels. The CIFAR-10 dataset consists of

colored images of 32 ◊ 32 pixels. We utilize a 4-layer DGP model with 100 inducing

inputs per layer and a robust-max multiclass likelihood [Hernández-Lobato et al.,

2011].

Parameter-Tying vs. No Parameter-Tying. Tables 4.4 shows results of the

test mean log-likelihood for another two UCI benchmark regression datasets over 10

runs that are achieved by IPVI with and without parameter tying. It can be observed

that IPVI achieves a considerably better predictive performance with parameter tying.

Table 4.4: Mean test accuracy (%) achieved by our IPVI framework with and without
parameter tying for three classification datasets.

Dataset MNIST fashion-MNIST CIFAR-10
DGP Layers 1 4 1 4 1 4
No Tying 96.77 97.45 86.69 88.01 47.13 52.76
Tying 97.02 97.80 87.29 88.90 48.07 53.27

Real World Classification. Table 4.5 reports the mean test accuracy over 10
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Time incurred by sampling from a 
4-layer DGP model for Airline 
dataset. 

MLL vs. total incurred time to 
train a 4-layer DGP model for 
the Airline dataset. 

IPVI is much faster than SGHMC in terms of training as well as 
sampling.
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Conclusion
A novel IPVI DGP framework 


Can ideally recover an unbiased posterior belief.

Preserve time efficiency.


Cast the DGP inference into a two-player game

Search for Nash equilibrium using BRD


Parameter-tying architecture

Alleviate overfitting

Speed up training and prediction


More details of our paper

Detailed architecture of generator and discriminator.

Detailed analysis of our BRD algorithm.

More experimental results.
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